Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 295(1): 101-113, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237081

RESUMO

Macrophages comprise a majority of the resident immune cells in adipose tissue (AT) and regulate both tissue homeostasis in the lean state and metabolic dysregulation in obesity. Since the AT environment rapidly changes based upon systemic energy status, AT macrophages (ATMs) must adapt phenotypically and metabolically. There is a distinct dichotomy in the polarization and bioenergetics of in vitro models, with M2 macrophages utilizing oxidative phosphorylation (OX PHOS) and M1 macrophages utilizing glycolysis. Early studies suggested differential polarization of ATMs, with M2-like macrophages predominant in lean AT and M1-like macrophages in obese AT. However, recent studies show that the phenotypic plasticity of ATMs is far more complicated, which is also reflected in their bioenergetics. Multiple ATM populations exist along the M2 to M1 continuum and appear to utilize both glycolysis and OX PHOS in obesity. The significance of the dual fuel bioenergetics is unclear and may be related to an intermediate polarization, their buffering capacity, or the result of a mixed population of distinct polarized ATMs. Recent evidence also suggests that ATMs of lean mice serve as a substrate buffer or reservoir to modulate lipid, catecholamine, and iron availability. Furthermore, recent models of weight loss and weight cycling reveal additional roles for ATMs in systemic metabolism. Evaluating ATM phenotype and intracellular metabolism together may more accurately illuminate the consequences of ATM accumulation in obese AT, lending further insight into obesity-related comorbidities in humans.


Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Suscetibilidade a Doenças , Metabolismo Energético , Homeostase , Humanos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Obesidade/etiologia , Obesidade/metabolismo
2.
Am J Physiol Endocrinol Metab ; 321(3): E376-E391, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338042

RESUMO

Tissue iron overload is associated with insulin resistance and mitochondrial dysfunction in rodents and humans; however, the mechanisms or cell types that mediate this phenotype are not completely understood. Macrophages (Mɸs) are known to contribute to iron handling; thus, we hypothesized that perturbed iron handling by Mɸs impairs mitochondrial energetics and evokes systemic insulin resistance in mice. Male and female mice with myeloid-targeted (LysMCre) deletion of the canonical iron exporter, ferroportin (Fpn, encoded by Slc40a1), floxed littermates, and C57BL/6J wild-type mice were used to test our hypotheses. Myeloid-targeted deletion of Fpn evoked multitissue iron accumulation and reduced mitochondrial respiration in bone marrow-derived Mɸs, liver leukocytes, and Mɸ-enriched populations from adipose tissue (AT). In addition, a single bolus of exogenous iron administered to C57BL/6J mice phenocopied the loss of Fpn, resulting in a reduction in maximal and mitochondrial reserve capacity in Mɸ-enriched cellular fractions from liver and AT. In vivo exogenous iron chelation restored mitochondrial reserve capacity in liver leukocytes from Fpn LysMCre mice, but had no effect in AT myeloid populations. However, despite the impairments in mitochondrial respiration, neither loss of myeloid-specific Fpn nor exogenous iron overload perturbed glucose homeostasis or systemic insulin action in lean or obese mice, whereas aging coupled with lifelong loss of Fpn unmasked glucose intolerance. Together these data demonstrate that iron handling is critical for the maintenance of macrophage mitochondrial function, but perturbing myeloid iron flux via the loss of Fpn action is not sufficient to evoke systemic insulin resistance in young adult mice. These findings also suggest that if Mɸs are capable of storing iron properly, they have a pronounced ability to withstand iron excess without evoking overt collateral damage and associated insulin resistance that may be age dependent.NEW & NOTEWORTHY We used myeloid-specific knockout of ferroportin to determine whether macrophage iron enrichment alters systemic metabolism. We found that macrophages in several tissues showed mitochondrial defects such as a reduction in mitochondrial reserve capacity. However, insulin action in the mice was preserved. These findings also suggest that Mɸs have a pronounced ability to withstand iron excess without evoking overt collateral damage and associated insulin resistance, which appears to be age dependent.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Insulina/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo , Animais , Metabolismo Energético , Feminino , Glucose/metabolismo , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Receptores de Interleucina-1
3.
Genes Dev ; 25(17): 1807-19, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21865325

RESUMO

Human telomere function is mediated by shelterin, a six-subunit complex that is required for telomere replication, protection, and cohesion. TIN2, the central component of shelterin, has binding sites to three subunits: TRF1, TRF2, and TPP1. Here we identify a fourth partner, heterochromatin protein 1γ (HP1γ), that binds to a conserved canonical HP1-binding motif, PXVXL, in the C-terminal domain of TIN2. We show that HP1γ localizes to telomeres in S phase, where it is required to establish/maintain cohesion. We further demonstrate that the HP1-binding site in TIN2 is required for sister telomere cohesion and can impact telomere length maintenance by telomerase. Remarkably, the PTVML HP1-binding site is embedded in the recently identified cluster of mutations in TIN2 that gives rise to dyskeratosis congenita (DC), an inherited bone marrow failure syndrome caused by defects in telomere maintenance. We show that DC-associated mutations in TIN2 abrogate binding to HP1γ and that DC patient cells are defective in sister telomere cohesion. Our data indicate a novel requirement for HP1γ in the establishment/maintenance of cohesion at human telomeres and, furthermore, may provide insight into the mechanism of pathogenesis in TIN2-mediated DC.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Disceratose Congênita/genética , Células HeLa , Humanos , Masculino , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica/genética , Fase S/genética , Complexo Shelterina , Telomerase/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
4.
Diabetes ; 71(11): 2313-2330, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35802127

RESUMO

In the setting of obesity and insulin resistance, glycemia is controlled in part by ß-cell compensation and subsequent hyperinsulinemia. Weight loss improves glycemia and decreases hyperinsulinemia, whereas weight cycling worsens glycemic control. The mechanisms responsible for weight cycling-induced deterioration in glucose homeostasis are poorly understood. Thus, we aimed to pinpoint the main regulatory junctions at which weight cycling alters glucose homeostasis in mice. Using in vivo and ex vivo procedures we show that despite having worsened glucose tolerance, weight-cycled mice do not manifest impaired whole-body insulin action. Instead, weight cycling reduces insulin secretory capacity in vivo during clamped hyperglycemia and ex vivo in perifused islets. Islets from weight-cycled mice have reduced expression of factors essential for ß-cell function (Mafa, Pdx1, Nkx6.1, Ucn3) and lower islet insulin content, compared with those from obese mice, suggesting inadequate transcriptional and posttranscriptional response to repeated nutrient overload. Collectively, these data support a model in which pancreatic plasticity is challenged in the face of large fluctuations in body weight resulting in a mismatch between glycemia and insulin secretion in mice.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Secreção de Insulina , Ciclo de Peso , Obesidade/metabolismo , Resistência à Insulina/fisiologia , Glicemia/metabolismo , Dieta , Hiperinsulinismo/metabolismo , Insulina Regular Humana , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo
5.
Mol Cell Biol ; 32(2): 376-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064479

RESUMO

Telomeres are coated by shelterin, a six-subunit complex that is required for protection and replication of chromosome ends. The central subunit TIN2, with binding sites to three subunits (TRF1, TRF2, and TPP1), is essential for stability and function of the complex. Here we show that TIN2 stability is regulated by the E3 ligase Siah2. We demonstrate that TIN2 binds to Siah2 and is ubiquitylated in vivo. We show using purified proteins that Siah2 acts as an E3 ligase to directly ubiquitylate TIN2 in vitro. Depletion of Siah2 led to stabilization of TIN2 protein, indicating that Siah2 regulates TIN2 protein levels in vivo. Overexpression of Siah2 in human cells led to loss of TIN2 at telomeres that was dependent on the presence of the catalytic RING domain of Siah2. In contrast to RNAi-mediated depletion of TIN2 that led to loss of TRF1 and TRF2 at telomeres, Siah2-mediated depletion of TIN2 allowed TRF1 and TRF2 to remain on telomeres, indicating a different fate for shelterin subunits when TIN2 is depleted posttranslationally. TPP1 was lost from telomeres, although its protein level was not reduced. We speculate that Siah2-mediated removal of TIN2 may allow dynamic remodeling of the shelterin complex and its associated factors during the cell cycle.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sítios de Ligação , Deleção de Genes , Células HeLa , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Estabilidade Proteica , Complexo Shelterina , Proteínas de Ligação a Telômeros/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Regulação para Cima
6.
J Biol Chem ; 277(13): 11107-15, 2002 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-11799110

RESUMO

Using loss-of-function mutants of Ros and inducible epidermal growth factor receptor-Ros chimeras we investigated the role of various signaling pathways in Ros-induced cell transformation. Inhibition of the mitogen-activated protein kinase (MAPK) pathway with the MEK (MAP/extracellular signal-regulated kinase kinase) inhibitor PD98059 had little effect on the Ros-induced monolayer and anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells even though more than 70% of the MAPK was inhibited. In contrast, inhibiting the phosphatidylinositol 3-kinase (PI3K) pathway with the drug LY294002, a dominant negative mutant of PI3K, Deltap85, or the phosphatidylinositol phosphatase PTEN (phosphatase and tensin homologue deleted in chromosome ten) resulted in a dramatic reduction of v-Ros- and epidermal growth factor receptor-Ros-promoted anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells, respectively. Parallel and downstream components of PI3K signaling such as the Rho family GTPases (Rac, Rho, Cdc42) and the survival factor Akt were all shown to contribute to Ros-induced anchorage-independent growth, although Rac appeared to be less important for Ros-induced colony formation in NIH3T3 cells. Furthermore, the transformation-attenuated v-Ros mutants F419 and DI could be complemented by constitutively active mutants of PI3K and Akt. Finally, we found that overexpressing a constitutively active mutant of STAT3 (STAT3C) conferred a resistance to the inhibition of Ros-induced anchorage-independent growth by LY294002, suggesting a possible overlap of functions between PI3K and STAT3 signaling in mediating Ros-induced anchorage-independent growth.


Assuntos
Transformação Celular Neoplásica , Proteínas de Ligação a DNA/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Repressoras/fisiologia , Transativadores/fisiologia , Animais , Adesão Celular , Divisão Celular , Linhagem Celular , Embrião de Galinha , Cromonas/farmacologia , Fibroblastos , Flavonoides/farmacologia , Genes Dominantes , Sistema de Sinalização das MAP Quinases , Camundongos , Morfolinas/farmacologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Fator de Transcrição STAT3 , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA