Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pain ; 25(1): 53-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37482234

RESUMO

Most reports agree that aging negatively impacts pain processing and that the prevalence of chronic pain increases significantly with age. To improve current therapies, it is critical that aged animals be included in preclinical studies. Here we compared sensitivities to pain and itch-provoking stimuli in naïve and injured young and aged mice. Surprisingly, we found that in the absence of injury, aged male and female mice are significantly less responsive to mechanical stimuli and, in females, also to noxious thermal (heat) stimuli. In both older male and female mice, compared to younger (6-month-old mice), we also recorded reduced pruritogen-evoked scratching. On the other hand, after nerve injury, aged mice nevertheless developed significant mechanical hypersensitivity. Interestingly, however, and in contrast to young mice, aged mice developed both ipsilateral and contralateral postinjury mechanical allodynia. In a parallel immunohistochemical analysis of microglial and astrocyte markers, we found that the ipsilateral to the contralateral ratio of nerve injury-induced expression decreased with age. That observation is consistent with our finding of contralateral hypersensitivity after nerve injury in the aged but not the young mice. We conclude that aging has opposite effects on baseline versus postinjury pain and itch processing. PERSPECTIVE: Aged male and female mice (22-24 months) are less sensitive to mechanical, thermal (heat), and itch-provoking stimuli than are younger mice (6 months).


Assuntos
Dor , Prurido , Masculino , Feminino , Camundongos , Animais , Hiperalgesia/etiologia
2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328157

RESUMO

Large library docking can reveal unexpected chemotypes that complement the structures of biological targets. Seeking new agonists for the cannabinoid-1 receptor (CB1R), we docked 74 million tangible molecules, prioritizing 46 high ranking ones for de novo synthesis and testing. Nine were active by radioligand competition, a 20% hit-rate. Structure-based optimization of one of the most potent of these (Ki = 0.7 uM) led to '4042, a 1.9 nM ligand and a full CB1R agonist. A cryo-EM structure of the purified enantiomer of '4042 ('1350) in complex with CB1R-Gi1 confirmed its docked pose. The new agonist was strongly analgesic, with generally a 5-10-fold therapeutic window over sedation and catalepsy and no observable conditioned place preference. These findings suggest that new cannabinoid chemotypes may disentangle characteristic cannabinoid side-effects from their analgesia, supporting the further development of cannabinoids as pain therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA