RESUMO
RATIONALE: The microvasculature of the central nervous system includes the blood-brain barrier (BBB), which regulates the permeability to nutrients and restricts the passage of toxic agents and inflammatory cells. Canonical Wnt/ß-catenin signaling is responsible for the early phases of brain vascularization and BBB differentiation. However, this signal declines after birth, and other signaling pathways able to maintain barrier integrity at postnatal stage are still unknown. OBJECTIVE: Sox17 (SRY [sex-determining region Y]-box 17) constitutes a major downstream target of Wnt/ß-catenin in endothelial cells and regulates arterial differentiation. In the present article, we asked whether Sox17 may act downstream of Wnt/ß-catenin in inducing BBB differentiation and maintenance. METHODS AND RESULTS: Using reporter mice and nuclear staining of Sox17 and ß-catenin, we report that although ß-catenin signaling declines after birth, Sox17 activation increases and remains high in the adult. Endothelial-specific inactivation of Sox17 leads to increase of permeability of the brain microcirculation. The severity of this effect depends on the degree of BBB maturation: it is strong in the embryo and progressively declines after birth. In search of Sox17 mechanism of action, RNA sequencing analysis of gene expression of brain endothelial cells has identified members of the Wnt/ß-catenin signaling pathway as downstream targets of Sox17. Consistently, we found that Sox17 is a positive inducer of Wnt/ß-catenin signaling, and it acts in concert with this pathway to induce and maintain BBB properties. In vivo, inhibition of the ß-catenin destruction complex or expression of a degradation-resistant ß-catenin mutant, prevent the increase in permeability and retina vascular malformations observed in the absence of Sox17. CONCLUSIONS: Our data highlight a novel role for Sox17 in the induction and maintenance of the BBB, and they underline the strict reciprocal tuning of this transcription factor and Wnt/ß-catenin pathway. Modulation of Sox17 activity may be relevant to control BBB permeability in pathological conditions.
Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Proteínas HMGB/metabolismo , Fatores de Transcrição SOXF/metabolismo , Via de Sinalização Wnt , Animais , Proteínas HMGB/genética , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOXF/genéticaRESUMO
Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.
Assuntos
Angiogênese , Células Endoteliais , Células Endoteliais/metabolismo , Nervos Periféricos/fisiologia , Neovascularização Fisiológica , Axônios , Regeneração Nervosa/fisiologiaRESUMO
The nervous system requires metabolites and oxygen supplied by the neurovascular network, but this necessitates close apposition of neurons and endothelial cells. We find motor neurons attract vessels with long-range VEGF signaling, but endothelial cells in the axonal pathway are an obstacle for establishing connections with muscles. It is unclear how this paradoxical interference from heterotypic neurovascular contacts is averted. Through a mouse mutagenesis screen, we show that Plexin-D1 receptor is required in endothelial cells for development of neuromuscular connectivity. Motor neurons release Sema3C to elicit short-range repulsion via Plexin-D1, thus displacing endothelial cells that obstruct axon growth. When this signaling pathway is disrupted, epaxial motor neurons are blocked from reaching their muscle targets and concomitantly vascular patterning in the spinal cord is altered. Thus, an integrative system of opposing push-pull cues ensures detrimental axon-endothelial encounters are avoided while enabling vascularization within the nervous system and along peripheral nerves.