Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chem Biodivers ; 21(6): e202400059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584309

RESUMO

Hepatocellular carcinoma (HCC) arises from precancerous nodules, leading to liver damage and inflammation, which triggers the release of proinflammatory cytokines. Dysregulation of these cytokines can escalate into a cytokine storm, causing severe organ damage. Interestingly, Moringa oleifera (M. oleifera) fruit peel, previously discarded as waste, contains an abundance of essential biomolecules and high nutritional value. This study focuses on the eco-friendly synthesis of silver nanoparticles infused with M. oleifera peel extract biomolecules and their impact on regulating proinflammatory cytokines, as well as their potential anticancer effects against Wistar rats. The freshly synthesized nanoformulation underwent comprehensive characterization, followed by antihepatic cancer evaluation using a diethyl nitrosamine-induced model (at a dose of 200 mg kg-1 BW). The study demonstrates a significant reduction in proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6, interleukin-1ß, and nuclear factor kappa beta (NF-κB). Furthermore, it confirms that the newly biosynthesized silver nanoparticles exhibit additional potential against hepatic cancer due to their capped biomolecules.


Assuntos
Citocinas , Neoplasias Hepáticas , Nanopartículas Metálicas , Moringa oleifera , Extratos Vegetais , Ratos Wistar , Prata , Moringa oleifera/química , Prata/química , Prata/farmacologia , Animais , Nanopartículas Metálicas/química , Citocinas/metabolismo , Citocinas/antagonistas & inibidores , Ratos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Dietilnitrosamina
2.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893400

RESUMO

The outbreak of SARS-CoV-2, also known as the COVID-19 pandemic, is still a critical risk factor for both human life and the global economy. Although, several promising therapies have been introduced in the literature to inhibit SARS-CoV-2, most of them are synthetic drugs that may have some adverse effects on the human body. Therefore, the main objective of this study was to carry out an in-silico investigation into the medicinal properties of Petiveria alliacea L. (P. alliacea L.)-mediated phytocompounds for the treatment of SARS-CoV-2 infections since phytochemicals have fewer adverse effects compared to synthetic drugs. To explore potential phytocompounds from P. alliacea L. as candidate drug molecules, we selected the infection-causing main protease (Mpro) of SARS-CoV-2 as the receptor protein. The molecular docking analysis of these receptor proteins with the different phytocompounds of P. alliacea L. was performed using AutoDock Vina. Then, we selected the three top-ranked phytocompounds (myricitrin, engeletin, and astilbin) as the candidate drug molecules based on their highest binding affinity scores of -8.9, -8.7 and -8.3 (Kcal/mol), respectively. Then, a 100 ns molecular dynamics (MD) simulation study was performed for their complexes with Mpro using YASARA software, computed RMSD, RMSF, PCA, DCCM, MM/PBSA, and free energy landscape (FEL), and found their almost stable binding performance. In addition, biological activity, ADME/T, DFT, and drug-likeness analyses exhibited the suitable pharmacokinetics properties of the selected phytocompounds. Therefore, the results of this study might be a useful resource for formulating a safe treatment plan for SARS-CoV-2 infections after experimental validation in wet-lab and clinical trials.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Compostos Fitoquímicos , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , COVID-19/virologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
3.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731418

RESUMO

Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related to cisplatin renal toxicity; notably, mitogen-activated protein kinase 1 (MAPK1) signaling. We validated protective effects in normal kidney cells without interfering with cisplatin cytotoxicity on a cancer cell line. Concurrent in vivo administration of papaverine alongside cisplatin in rats prevented elevations in nephrotoxicity markers, including serum creatinine, blood urea nitrogen, and renal oxidative stress markers (malondialdehyde, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines), as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). Papaverine also reduced apoptosis markers such as Bcl2 and Bcl-2-associated X protein (Bax) and kidney injury molecule-1 (KIM-1), and histological damage. In addition, it upregulates antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) while boosting anti-inflammatory signaling interleukin-10 (IL-10). These effects were underlined by the ability of Papaverine to downregulate MAPK-1 expression. Overall, these findings show papaverine could protect against cisplatin kidney damage without reducing its cytotoxic activity. Further research would allow the transition of these results to clinical practice.


Assuntos
Cisplatino , Inflamação , Estresse Oxidativo , Papaverina , Cisplatino/efeitos adversos , Papaverina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Ratos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/induzido quimicamente , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Substâncias Protetoras/farmacologia , Antioxidantes/farmacologia , Citocinas/metabolismo , Simulação por Computador , Biomarcadores
4.
Medicina (Kaunas) ; 60(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38541094

RESUMO

Background and Objectives: A polymorphism in the promoter region of the IL-6 gene would influence the level of IL-6 expression in patients with HCV, resulting in a pro-inflammatory response. Few studies have shown the association between -174G>C (rs1800795) and -1363G>T (rs2069827) polymorphisms and HCV infection, and their results have been contradictory. There are no data published in our population to study such an IL-6 stimulus against HCV infection and its impact on RNA secondary structure. Therefore, we isolated human subjects from the province of Punjab, Pakistan. The objective was to screen for IL-6 gene promoter polymorphisms -174G/C and -1363G/T and those correlated with serum concentrations of IL-6 in patients with HCV and compared with a control. Materials and Methods: In conventional PCR, measurement of serum IL-6 by CLIA and statistical analysis were performed to observe the genotype association studies. By integrating bioinformatics and computational tools, our study aimed to provide a comprehensive understanding of how variations in the promoter region of IL-6 may have functional implications on gene expression. Results: The -174G>C and -1363G>T genotypes in the promoter region of patients with HCV were in strong allelic association (Δ = 0.97, p < 0.001). Interestingly, the bioinformatics analysis was well aligned with our experimental data. Conclusions: Based on the data, it can be inferred that IL-6 gene promoter polymorphisms are important in the dysregulation of IL-6 levels in patients with HCV.


Assuntos
Hepatite C , Interleucina-6 , Humanos , Predisposição Genética para Doença , Genótipo , Hepacivirus/genética , Hepatite C/genética , Interleucina-6/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética
5.
J Enzyme Inhib Med Chem ; 38(1): 2231170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470409

RESUMO

This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.


Assuntos
Aldeído Redutase , Hipoglicemiantes , Animais , Camundongos , Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Cinética , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia
6.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902371

RESUMO

The presence of the p-aryl/cyclohexyl ring in the N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazine carbothioamide derivative (2C) is reported to enhance the antifungal properties when compared to those of itraconazole. Serum albumins present in plasma bind and transport ligands, including pharmaceuticals. This study explored 2C interactions with BSA using spectroscopic methods such as fluorescence and UV-visible spectroscopy. In order to acquire a deeper comprehension of how BSA interacts with binding pockets, a molecular docking study was carried out. The fluorescence of BSA was quenched by 2C via a static quenching mechanism since a decrease in quenching constants was observed from 1.27 × 105 to 1.14 × 105. Thermodynamic parameters indicated hydrogen and van der Waals forces responsible for the BSA-2C complex formation with binding constants ranging between 2.91 × 105 and 1.29 × 105, which suggest a strong binding interaction. Site marker studies displayed that 2C binds to BSA's subdomains IIA and IIIA. Molecular docking studies were conducted to further comprehend the molecular mechanism of the BSA-2C interaction. The toxicity of 2C was predicted by Derek Nexus software. Human and mammalian carcinogenicity and skin sensitivity predictions were associated with a reasoning level of equivocal, inferring 2C to be a potential drug candidate.


Assuntos
Antifúngicos , Soroalbumina Bovina , Animais , Humanos , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Hidrazinas , Termodinâmica , Piridinas , Sítios de Ligação , Espectrometria de Fluorescência , Ligação Proteica , Espectrofotometria Ultravioleta , Dicroísmo Circular , Mamíferos/metabolismo
7.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630258

RESUMO

In this study, a series of novel benzofuran-based 1,2,4-triazole derivatives (10a-e) were synthesized and evaluated for their inhibitory potential against acetylcholinesterase (AChE) and bacterial strains (E. coli and B. subtilis). Preliminary results revealed that almost all assayed compounds displayed promising efficacy against AChE, while compound 10d was found to be a highly potent inhibitor of AChE. Similarly, these 5-bromobenzofuran-triazoles 10a-e were screened against B. subtilis QB-928 and E. coli AB-274 to evaluate their antibacterial potential in comparison to the standard antibacterial drug penicillin. Compound 10b was found to be the most active among all screened scaffolds, with an MIC value of 1.25 ± 0.60 µg/mL against B. subtilis, having comparable therapeutic efficacy to the standard drug penicillin (1 ± 1.50 µg/mL). Compound 10a displayed excellent antibacterial therapeutic efficacy against the E. coli strain with comparable MIC of 1.80 ± 0.25 µg/mL to that of the commercial drug penicillin (2.4 ± 1.00 µg/mL). Both the benzofuran-triazole molecules 10a and 10b showed a larger zone of inhibition. Moreover, IFD simulation highlighted compound 10d as a novel lead anticholinesterase scaffold conforming to block entrance, limiting the swinging gate, and disrupting the catalytic triad of AChE, and further supported its significant AChE inhibition with an IC50 value of 0.55 ± 1.00 µM. Therefore, compound 10d might be a promising candidate for further development in Alzheimer's disease treatment, and compounds 10a and 10b may be lead antibacterial agents.


Assuntos
Acetilcolinesterase , Benzofuranos , Simulação de Acoplamento Molecular , Escherichia coli , Antibacterianos/farmacologia , Penicilinas , Benzofuranos/farmacologia , Anticorpos Antibacterianos , Triazóis/farmacologia
8.
Molecules ; 28(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764352

RESUMO

Marek's disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective antiviral drugs for MDV. In this study, our main objective was to identify novel antiviral phytochemicals through in silico analysis. We employed Alphafold to construct a three-dimensional (3D) structure of the MDV DNA polymerase, a crucial enzyme involved in viral replication. To ensure the accuracy of the structural model, we validated it using tools available at the SAVES server. Subsequently, a diverse dataset containing thousands of compounds, primarily derived from plant sources, was subjected to molecular docking with the MDV DNA polymerase model, utilizing AutoDock software V 4.2. Through comprehensive analysis of the docking results, we identified Disalicyloyl curcumin as a promising drug candidate that exhibited remarkable binding affinity, with a minimum energy of -12.66 Kcal/mol, specifically targeting the DNA polymerase enzyme. To further assess its potential, we performed molecular dynamics simulations, which confirmed the stability of Disalicyloyl curcumin within the MDV system. Experimental validation of its inhibitory activity in vitro can provide substantial support for its effectiveness. The outcomes of our study hold significant implications for the poultry industry, as the discovery of efficient antiviral phytochemicals against MDV could substantially mitigate the economic losses associated with this devastating disease.

9.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446769

RESUMO

Potentilla nepalensis Hook is a perennial Himalayan medicinal herb of the Rosaceae family. The present study aimed to evaluate biological activities such as the antioxidant, antibacterial, and anticancer activities of roots and shoots of P. nepalensis and its synergistic antibacterial activity with antibacterial drugs. Folin-Ciocalteau and aluminium chloride methods were used for the calculation of total phenolic (TPC) and flavonoid content (TFC). A DPPH radical scavenging assay and broth dilution method were used for the determination of the antioxidant and antibacterial activity of the root and shoot extracts of P. nepalensis. Cytotoxic activity was determined using a colorimetric MTT assay. Further, phytochemical characterization of the root and shoot extracts was performed using the Gas chromatography-mass spectrophotometry (GC-MS) method. The TPC and TFC were found to be higher in the methanolic root extract of P. nepalensis. The methanolic shoot extract of P. nepalensis showed good antioxidant activity, while then-hexane root extract of P. nepalensis showed strong cytotoxic activity against tested SK-MEL-28 cells. Subsequently, in silico molecular docking studies of the identified bioactive compounds predicted potential anticancer properties. This study can lead to the production of new herbal medicines for various diseases employing P. nepalensis, leading to the creation of new medications.


Assuntos
Melanoma , Plantas Medicinais , Potentilla , Simulação de Acoplamento Molecular , Antioxidantes/química , Potentilla/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/química , Antibacterianos/farmacologia , Metanol/química , Melanoma/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Computadores
10.
Molecules ; 23(7)2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954138

RESUMO

Enaminones, 4-methyl-1-[4-(piperazin/morpholin-1-yl) phenyl] pent-2-en-1-one (IIa⁻b) were synthesized by refluxing 1-[4-(piperazin/morpholin-1-yl) phenyl] ethan-1-one (Ia⁻b) with dimethylformamide dimethylacetal (DMF⁻DMA) without any solvent. The three dimensional structure of enaminone (IIb) containing morpholine moiety was confirmed by single crystal X-ray crystallography. Finally, the dihydropyrimidinone derivatives (1⁻20) were obtained by reacting enaminones (IIa⁻b) with urea and different substituted benzaldehydes in the presence of glacial acetic acid. Dihydropyrimidinone derivatives containing piperazine/morpholine moiety were synthesized in a good yield by means of simple and efficient method.


Assuntos
Morfolinas/química , Piperazinas/química , Ácido Acético/química , Benzaldeídos/química , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Piperazina , Relação Estrutura-Atividade
11.
Molecules ; 23(6)2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29882911

RESUMO

A new series of 2-(5-methoxy-2-methyl-1H-indol-3-yl)-N'-[(E)-(substituted phenyl) methylidene] acetohydrazide derivatives (S1⁻S18) were synthesized and evaluated for their anti-inflammatory activity, analgesic activity, ulcerogenic activity, lipid peroxidation, ulcer index and cyclooxygenase expression activities. All the synthesized compounds were in good agreement with spectral and elemental analysis. Three synthesized compounds (S3, S7 and S14) have shown significant anti-inflammatory activity as compared to the reference drug indomethacin. Compound S3 was further tested for ulcerogenic index and cyclooxygenase (COX) expression activity. It was selectively inhibiting COX-2 expression and providing the gastric sparing activity. Docking studies have revealed the potential of these compounds to bind with COX-2 enzyme. Compound S3 formed a hydrogen bond between OH of Tyr 355 and NH2 of Arg 120 with carbonyl group and this hydrogen bond was similar to that formed by indomethacin. This study provides insight for compound S3, as a new lead compound as anti-inflammatory agent and selective COX-2 inhibitor.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Indóis/química , Indóis/farmacologia , Analgésicos/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Inibidores de Ciclo-Oxigenase 2/síntese química , Avaliação Pré-Clínica de Medicamentos , Ligação de Hidrogênio , Indóis/síntese química , Masculino , Espectrometria de Massas , Camundongos , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Ratos
12.
Molecules ; 21(12)2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27999374

RESUMO

Novel 4-(4-substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thione derivatives (DHP1-9) were designed, synthesized, characterized and evaluated for antitumor activity against cancer stem cells. The compounds were synthesized in one pot. Enaminones E1 and E2 were reacted with substituted benzaldehydes and urea/thiourea in the presence of glacial acetic acid. The synthesized compounds were characterized by spectral analysis. The compounds were screened in vitro against colon cancer cell line (LOVO) colon cancer stem cells. Most of the compounds were found to be active against side population cancer stem cells with an inhibition of >50% at a 10 µM concentration. Compounds DHP-1, DHP-7 and DHP-9 were found to be inactive. Compound DHP-5 exhibited an in vitro anti-proliferative effect and arrested cancer cells at the Gap 2 phase (G2) checkpoint and demonstrated an inhibitory effect on tumor growth for a LOVO xenograft in a nude mouse experiment.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirimidinas/química , Tionas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias do Colo , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Bioorg Med Chem Lett ; 25(1): 83-7, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25466196

RESUMO

Cyclohexyl thiosemicarbazone derivatives (C1-14) were synthesized, characterized and evaluated against HER-2 over expressed breast cancer cells. The synthesized compounds were screened in vitro against four breast cancer cell lines; SKBr-3, MCF-7, MDA-MB-468 and MDA-MB-231. All the compounds showed activity against HER-2 over expressed SKBr-3 cells with (IC50 = 25.6 ± 0.07 µM-61.6 ± 0.4 µM). The most active compounds inhibit ALDH⁺ breast cancer stem cells more effectively than the cancer stem cells specific agent Salinomycin. Immunohistochemistry staining also confirmed that these compounds inhibit the expression of HER-2 on SKBr-3 cells. Compound C2 significantly inhibited the cell migration and cell adhesion of breast cancer cell lines. Compound C2 was found to most active compound of this series targeting HER-2 over expressed breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Regulação Neoplásica da Expressão Gênica , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/biossíntese , Tiossemicarbazonas/síntese química , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Células MCF-7 , Tiossemicarbazonas/administração & dosagem
14.
Bioorg Med Chem Lett ; 24(5): 1299-302, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24513049

RESUMO

Eighteen N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide derivatives were synthesized, evaluated against ten clinical isolates of Candida spp. and compared with itraconazole. Introduction of p-chloro (2c), p-iodo (2q), m-chloro (2l) and o-nitro (2r) substitution at phenyl ring of thiosemicarbazide enhanced the anti-Candida activity. Compound (2c) bearing p-cholorophenyl ring was found to be the most effective against Candida albicans ATCC 66027, Candida spp. 12810 (blood) and Candida spp. 178 (HVS) with MIC value of 0.09-0.78 µg/mL, whereas itraconazole exhibits the inhibitory activity with MIC value of 0.04-1.56 µg/mL against all tested strains. There is a correlation between anti-Candidal activity and p-chloro substitution at phenyl ring of thiosemicarbazide. All synthesized compounds were investigated for their potential cytotoxicity against non cancer cell line MCF-10A. The active compounds 2c, 2r and 2a were further investigated for their cytotoxic effects on three cancer cell lines; HT1080 (skin), HepG2 (liver) and A549 (lung). The active compounds showed minimal cytotoxic activity against non cancer cell line and all three cancer cell lines. Moreover, compound 2c displaying better activity against C. albicans ATCC66027 and Candida spp. [blood] compared to reference drug (itraconazole), represents a good lead for the development of newer, potent and broad spectrum anti-Candidal agents.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Hidrazinas/química , Piridinas/química , Tioamidas/química , Antifúngicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Fúngica , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Tioamidas/síntese química , Tioamidas/farmacologia
15.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675393

RESUMO

SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus) based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their protein-protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib, Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and lptD) was investigated by computing their binding free energies with molecular dynamic (MD) simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the findings of this study could be useful resources for developing a proper treatment plan against bacterial co-/super-/secondary-infection in SARS-CoV-2 infections.

16.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675404

RESUMO

Histone deacetylases (HDACs) are enzymes that remove acetyl groups from ɛ-amino of histone, and their involvement in the development and progression of cancer disorders makes them an interesting therapeutic target. This study seeks to discover new inhibitors that selectively inhibit HDAC enzymes which are linked to deadly disorders like T-cell lymphoma, childhood neuroblastoma, and colon cancer. MOE was used to dock libraries of ZINC database molecules within the catalytic active pocket of target HDACs. The top three hits were submitted to MD simulations ranked on binding affinities and well-occupied interaction mechanisms determined from molecular docking studies. Inside the catalytic active site of HDACs, the two stable inhibitors LIG1 and LIG2 affect the protein flexibility, as evidenced by RMSD, RMSF, Rg, and PCA. MD simulations of HDACs complexes revealed an alteration from extended to bent motional changes within loop regions. The structural deviation following superimposition shows flexibility via a visual inspection of movable loops at different timeframes. According to PCA, the activity of HDACs inhibitors induces structural dynamics that might potentially be utilized to define the nature of protein inhibition. The findings suggest that this study offers solid proof to investigate LIG1 and LIG2 as potential HDAC inhibitors.

17.
Front Chem ; 12: 1403127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855062

RESUMO

An important component of the pathogenicity of potentially pathogenic bacteria in humans is the urease enzyme. In order to avoid the detrimental impact of ureolytic bacterial infections, the inhibition of urease enzyme appears to be an appealing approach. Therefore, in the current study, morpholine-thiophene hybrid thiosemicarbazone derivatives (5a-i) were designed, synthesized and characterized through FTIR, 1H NMR, 13C NMR spectroscopy and mass spectrometry. A range of substituents including electron-rich, electron-deficient and inductively electron-withdrawing groups on the thiophene ring was successfully tolerated. The synthesized derivatives were evaluated in vitro for their potential to inhibit urease enzyme using the indophenol method. The majority of compounds were noticeably more potent than the conventional inhibitor, thiourea. The lead inhibitor, 2-(1-(5-chlorothiophen-2-yl)ethylidene)-N-(2-morpholinoethyl)hydrazinecarbothioamide (5g) inhibited the urease in an uncompetitive manner with an IC50 value of 3.80 ± 1.9 µM. The findings of the docking studies demonstrated that compound 5g has a strong affinity for the urease active site. Significant docking scores and efficient binding free energies were displayed by the lead inhibitor. Finally, the ADME properties of lead inhibitor (5g) suggested the druglikeness behavior with zero violation.

18.
Front Chem ; 12: 1380523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694406

RESUMO

Diabetes mellitus is a multi-systematic chronic metabolic disorder and life-threatening disease resulting from impaired glucose homeostasis. The inhibition of glucosidase, particularly α-glucosidase, could serve as an effective methodology in treating diabetes. Attributed to the catalytic function of glucosidase, the present research focuses on the synthesis of sulfonamide-based acyl pyrazoles (5a-k) followed by their in vitro and in silico screening against α-glucosidase. The envisaged structures of prepared compounds were confirmed through NMR and FTIR spectroscopy and mass spectrometry. All compounds were found to be more potent against α-glucosidase than the standard drug, acarbose (IC50 = 35.1 ± 0.14 µM), with IC50 values ranging from 1.13 to 28.27 µM. However, compound 5a displayed the highest anti-diabetic activity (IC50 = 1.13 ± 0.06 µM). Furthermore, in silico studies revealed the intermolecular interactions of most potent compounds (5a and 5b), with active site residues reflecting the importance of pyrazole and sulfonamide moieties. This interaction pattern clearly manifests various structure-activity relationships, while the docking results correspond to the IC50 values of tested compounds. Hence, recent investigation reveals the medicinal significance of sulfonamide-clubbed pyrazole derivatives as prospective therapeutic candidates for treating type 2 diabetes mellitus (T2DM).

19.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276007

RESUMO

Potentilla nepalensis belongs to the Rosaceae family and has numerous therapeutic applications as potent plant-based medicine. Forty phytoconstituents (PCs) from the root and stem through n-hexane (NR and NS) and methanolic (MR and MS) extracts were identified in earlier studies. However, the PCs affecting human genes and their roles in the body have not previously been disclosed. In this study, we employed network pharmacology, molecular docking, molecular dynamics simulations (MDSs), and MMGBSA methodologies. The SMILES format of PCs from the PubChem was used as input to DIGEP-Pred, with 764 identified as the inducing genes. Their enrichment studies have shown inducing genes' gene ontology descriptions, involved pathways, associated diseases, and drugs. PPI networks constructed in String DB and network topological analyzing parameters performed in Cytoscape v3.10 revealed three therapeutic targets: TP53 from MS-, NR-, and NS-induced genes; HSPCB and Nf-kB1 from MR-induced genes. From 40 PCs, two PCs, 1b (MR) and 2a (MS), showed better binding scores (kcal/mol) with p53 protein of -8.6 and -8.0, and three PCs, 3a, (NR) 4a, and 4c (NS), with HSP protein of -9.6, -8.7, and -8.2. MDS and MMGBSA revealed these complexes are stable without higher deviations with better free energy values. Therapeutic targets identified in this study have a prominent role in numerous cancers. Thus, further investigations such as in vivo and in vitro studies should be carried out to find the molecular functions and interlaying mechanism of the identified therapeutic targets on numerous cancer cell lines in considering the PCs of P. nepalensis.

20.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38675373

RESUMO

Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA