Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 186(11): 7399-411, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25049142

RESUMO

Physical aspects of tobacco samples, used in some commonly available Indian brands of cigarettes, with emphasis on their magnetic characterization before and after they get burnt into ashes, are described. The present work highlights the ultrafine nature of the cigarette ashes and provides a compositional insight of their constituent particulate matters as revealed by the XRD and SEM studies. Based on the EDX spectra, elemental distributions of different tobacco samples, before and after they get burnt, are presented. In this work, magnetic measurements of the un-burnt tobacco samples are reported. An attempt is made to shed light on the origin of magnetism observed in these samples.


Assuntos
Monitoramento Ambiental , Substâncias Perigosas/análise , Material Particulado/análise , Produtos do Tabaco/análise , Fenômenos Magnéticos , Magnetismo , Nicotiana
2.
RSC Adv ; 14(39): 28944-28955, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39263438

RESUMO

In recent years, water pollution has become a pressing global issue because of the continuous release of organic dyes from various industries. Therefore, finding an easy way to remove these harmful dyes from water has drawn the attention of researchers. This study investigates the removal of toxic Rose Bengal (RB) dye using hematite nanoparticles as a visible light photocatalyst without any additive. It is observed that by controlling particle size, quantity of the nanoparticles and reaction temperature, the dye degradation can be improved up to 95.33% with a half-life of 26 min. To understand photodegradation kinetic behavior, the Langmuir-Hinshelwood kinetic equation can be employed. The scavenger test indicated that the OH* radicals majorly led to the photodegradation process. The reaction rate values strongly depended on the size, quantity of the nanoparticles and reaction temperature. Controlling the optimizing condition, faster reaction rate (k = 0.027 min-1) can be achieved as compared to earlier reports. It is also noted that the change in the degradation efficiency of the reused catalyst is negligible when compared to the fresh one. Here, the dye degradation mechanism is discussed. Overall, this study reveals that hematite nanoparticles can be used as efficient photocatalyst for dye degradation applications by optimizing the controlling factors. These observations provide novel perspectives on the development of effective and sustainable photocatalytic technologies for pollution control and water treatment applications.

3.
ACS Omega ; 9(21): 22607-22618, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826527

RESUMO

Recently, we have reported the influence of various reaction atmospheres on the solid-state reaction kinetics of ferrocene, where oxalic acid dihydrate was used as a coprecursor. In this light, present study discusses on the nature of decomposed materials of the solid-state reactions of ferrocene in O2, air, and N2 atmospheres. The ambient and oxidative atmospheres caused the decomposition to yield pure hematite nanomaterials, whereas cementite nanomaterials along with α-Fe were obtained in N2 atmosphere. The obtained materials were mostly agglomerated. Elemental composition of each material was estimated. Using the absorbance data, the energy band gap values were estimated and the related electronic transitions from the observed absorption spectra were explored. Urbach energy was calculated for hematite, which described the role of defects in the decomposed materials. The nanostructures exhibited photoluminescence due to self-trapped states linked to their optical characteristics. Raman spectroscopy of hematite detected seven Raman modes, confirming the rhombohedral structure, whereas the D and G bands were visible in the Raman spectra for cementite. Thus, the reaction atmosphere significantly influenced the thermal decomposition of ferrocene and controls the type of nanomaterials obtained. Plausible reactions of the undergoing solid-state decomposition have been proposed.

4.
Environ Monit Assess ; 185(10): 8673-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23612769

RESUMO

This paper deals with the physical nature of the fly ashes obtained from two thermal power plants, situated in West Bengal, India. The fly ash samples are characterized by using comprehensive techniques with an emphasis on their ultrafine nature. The particle sizes of the samples are estimated using scanning electron microcopy (SEM) and found to lie within 0.18-5.90 µm. For morphology and compositional analysis, we also use SEM coupled with energy dispersive X-ray spectrometry. From X-ray study of the fly ashes the nature of conglomeration is seen to be crystalline, and the major components are mullite (Al6Si2O13) and quartz (SiO2). The magnetic measurement of the fly ash samples was carried out by SQUID magnetometer. (57)Fe Mössbauer spectra are obtained using a conventional constant-acceleration spectrometer with a (57)Co/Rh Mössbauer source. The hyperfine parameters obtained, in general, support the findings as made from XRD analysis and provide a quantitative measure of different iron ions present in the samples. The paper presents experimental data on the physical aspects of the fly ash samples of the thermal power plants which comprise coarse, fine, and ultrafine magnetic particulate materials and attempts to provide an exhaustive analysis.


Assuntos
Poluentes Atmosféricos/análise , Cinza de Carvão/química , Material Particulado/química , Centrais Elétricas , Monitoramento Ambiental , Índia , Magnetismo , Tamanho da Partícula , Medição de Risco , Espectrometria por Raios X
5.
RSC Adv ; 13(50): 34972-34986, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38046626

RESUMO

Thermal decomposition of a mixture of ferrocene carboxaldehyde and oxalic acid dihydrate in O2 atmosphere produced rod-like hematite nanomaterial. The decomposition reaction was complex as evident from the overlapped multistep reaction steps in the non-isothermal thermogravimetry (TG) profiles obtained in the 300-700 K range. A peak deconvolution method was applied to separate the overlapped reaction steps. The multistep TG profiles were successfully deconvoluted, which showed that the decomposition occurs in six individual steps. However, it was found that only the last three reaction steps were responsible for the production of hematite. To estimate the activation energy values for these thermal reactions, six model-free integral isoconversional methods were used. The activation energy value significantly depends on the extent of conversion in each step; however, the nature of its dependence significantly different for each step. The most probable stepwise reaction mechanism functions for the solid-state reactions were obtained using the master plot method. The reaction mechanism was found to be different for different steps. Utilizing the activation energy and reaction mechanism function, the reaction rates of decomposition for each step were determined. To substantiate the validity of the assumed kinetic models, the experimental conversion curves were compared with the constructed ones, and the agreement was quite reasonable. The conversion-dependent thermodynamic parameters were obtained utilising the estimated kinetic parameters. Role of the co-precursor in the thermal reaction of the precursor was plausibly revealed. The present study describes how the use of a co-precursor significantly enhances the thermal decomposition of the precursor, how hematite nanomaterials can be synthesized from a co-precursor driven solid state reaction at low temperatures, and how the kinetic calculations facilitate the understanding of the solid-state reaction process. This study proposes the use of a suitable combination of precursor and co-precursor for solid-state thermal synthesis of iron-based nanoparticles using organo-iron compounds as precursor and also illustrates the effective application of the thermal analysis technique to understand the decomposition reaction.

6.
Environ Monit Assess ; 176(1-4): 473-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20635201

RESUMO

Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and tunneling electron microscopy (TEM) studies of two solid vehicle wastes (pollutants) from petrol- and diesel-fueled engines of Kolkata (India) have detected a significant amount of ultrafine particles in the nanometer scale in these wastes. Both powder XRD and selected area electron diffraction from TEM have confirmed the existence of inhomogeneous distribution of nanocrystallites in these pollutants. Energy dispersive X-ray spectrometry shows that these wastes contain mainly carbon and oxygen as the constituent components. These pollutants are magnetic in nature as seen with SQUID magnetometry, and the presence of a high amount of carbon presumably is likely the origin of the magnetic property.


Assuntos
Automóveis , Material Particulado/análise , Monitoramento Ambiental , Microscopia de Força Atômica , Espectrometria por Raios X , Difração de Raios X
8.
Dalton Trans ; 40(26): 6952-60, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21647487

RESUMO

[Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) ions were entrapped into the cavities of two-dimensional anionic sheet-like coordination polymeric networks of [M(dca)(3)](-) (dca = dicyanamide; M = Mn(II) and Fe(II)). The prepared compounds, {[Ru(bpy)(3)][Mn(dca)(3)](2)}(n) (1) and {[Ru(bpy)(3)][Fe(dca)(3)](2)}(n) (2), were structurally characterized by X-ray single crystal analysis. The spectroscopic properties of the [Ru(bpy)(3)](2+) ion dramatically changed on its entrapment in [M(dca)(3)](-). The [Ru(bpy)(3)](2+) moiety present in 1 and 2 exhibits novel dual photo-emission at room temperature.

9.
Langmuir ; 24(11): 5970-5, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18457431

RESUMO

A layered oxo-vanadium(IV) dihydrogen phosphate, {VO(H2PO 4)2} n has been synthesized hydrothermally and characterized by several physicochemical methods. Single-crystal X-ray analysis (crystal system, tetragonal; space group, P4/ ncc; unit cell dimensions, a = b = 8.9632(4), c = 7.9768(32) A) of {VO(H2PO4) 2} n reveals that the compound has an extended two-dimensional structure. The VO2+ moieties are connected through bridging H 2PO4 (-) ions, and this type of connection propagates parallel to the crystallographic ab plane which gives rise to a layered structure. The layers are staked parallel to the crystallographic c axis with a separation between the layers of ca. 4.0 A. Magnetic susceptibility of {VO(H2PO4)2} n has been measured in the temperature range 2-300 K on a SQUID magnetometer. The magnetic property of {VO(H2PO4)2} n is explicable in the light of a two-dimensional quantum Heisenberg antiferromagnet model. Magnetic pathways are available through the dihydrogen-phosphato bridges within the layer and provide for weak antiferromagnetic interactions. Notably {VO(H2PO4)2} n catalyzes the epoxidation reaction of alkenes with tert-BuOOH in acetonitrile medium under heterogeneous condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA