Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Plant Mol Biol ; 113(6): 383-400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991689

RESUMO

Plant cell wall-derived oligosaccharides, i.e., damage-associated molecular patterns (DAMPs), could be generated after pathogen attack or during normal plant development, perceived by cell wall receptors, and can alter immunity and cell wall composition. Therefore, we hypothesised that xylo-oligosaccharides (XOS) could act as an elicitor and trigger immune responses. To test this, we treated Arabidopsis with xylobiose (XB) and investigated different parameters. XB-treatment significantly triggered the generation of reactive oxygen species (ROS), activated MAPK protein phosphorylation, and induced callose deposition. The combination of XB (DAMP) and flg22 a microbe-associated molecular pattern (MAMP) further enhanced ROS response and gene expression of PTI marker genes. RNA sequencing analysis revealed that more genes were differentially regulated after 30 min compared to 24 h XB-treated leaves, which correlated with ROS response. Increased xylosidase activity and soluble xylose level after 30 min and 3 h of XB-treatment were observed which might have weakened the DAMP response. However, an increase in total cell wall sugar and a decrease in uronic acid level was observed at both 30 min and 24 h. Additionally, arabinose, rhamnose, and xylose levels were increased in 30 min, and glucose was increased in 24 h compared to mock-treated leaves. The level of jasmonic acid, abscisic acid, auxin, and cytokinin were also affected after XB treatment. Overall, our data revealed that the shortest XOS can act as a DAMP, which triggers the PTI response and alters cell wall composition and hormone level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xilose/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Oligossacarídeos/metabolismo , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 190(4): 2722-2738, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124979

RESUMO

The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOG 1 (ASK1), and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferases (Aceptor do Grupo Álcool) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos de Inositol/metabolismo , Plantas/metabolismo , Polifosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
3.
Med J Armed Forces India ; 79(5): 590-592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719913

RESUMO

A pulmonary nodule is a common radiological finding encountered in routine medical practice. It needs to be extensively evaluated as the differential diagnosis can range from sinister malignancies to fully treatable infectious causes. Here, we present a rare case of pulmonary paragonimiasis presenting as pulmonary nodule. This case report aims to sensitise the medical practitioner regarding pulmonary paragonimiasis which is completely treatable but carries a high risk of being under diagnosed.

4.
Med J Armed Forces India ; 79(2): 235-237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969111

RESUMO

Pulmonary sequestration also called as bronchopulmonary sequestration is a rare congenital anomaly. It is defined as a mass of dysplastic lung tissue which has no connection with the main bronchopulmonary tree and is supplied by a branch of systemic artery and drainage by the separate venous system. It can be classified into intralobar and extralobar variety, with intralobar being more common. Its incidence is around 1 per 8300 to 35000, and it constitutes about 0.15-6.4% of all congenital lung anomalies. It generally involves lower lobes with the left lobe being more common than the right. It is an uncommon entity and rarely reported in literature for lingula. Its distribution is equal in gender distribution except for extralobar variety which has a male preponderance. It generally presents with recurrent pneumonia and hemoptysis. Here, we describe a very rare case of intralobar lingular sequestration in a patient who presented with recurrent chest infections and was managed with segmentectomy.

5.
Plant Cell Rep ; 41(2): 347-363, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797387

RESUMO

KEY MESSAGE: Selective Arabidopsis thaliana inositol phosphate kinase functions modulate response amplitudes in innate immunity by balancing signalling adjustments with phosphate homeostasis networks. Pyrophosphorylation of InsP6 generates InsP7 and/or InsP8 containing high-energy phosphoanhydride bonds that are harnessed during energy requirements of a cell. As bona fide co-factors for several phytohormone networks, InsP7/InsP8 modulate key developmental processes. With requirements in transducing jasmonic acid (JA) and phosphate-starvation responses (PSR), InsP8 exemplifies a versatile metabolite for crosstalks between different cellular pathways during diverse stress exposures. Here we show that Arabidopsis thaliana INOSITOL PENTAKISPHOSPHATE 2-KINASE 1 (IPK1), INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 1 (ITPK1), and DIPHOSPHOINOSITOL PENTAKISPHOSPHATE KINASE 2 (VIH2) implicated in InsP8 biosynthesis, suppress salicylic acid (SA)-dependent immunity. In ipk1, itpk1 or vih2 mutants, constitutive activation of defenses lead to enhanced resistance against the Pseudomonas syringae pv tomato DC3000 (PstDC3000) strain. Our data reveal that upregulated SA-signaling sectors potentiate increased expression of several phosphate-starvation inducible (PSI)-genes, previously known in these mutants. In reciprocation, upregulated PSI-genes moderate expression amplitudes of defense-associated markers. We demonstrate that SA is induced in phosphate-deprived plants, however its defense-promoting functions are likely diverted to PSR-supportive roles. Overall, our investigations reveal selective InsPs as crosstalk mediators in defense-phosphate homeostasis and in reprogramming stress-appropriate response intensities.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferases (Aceptor do Grupo Álcool) , Imunidade Vegetal , Ácido Salicílico , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Mutação , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
IUBMB Life ; 73(9): 1115-1130, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089218

RESUMO

Transcription elongation is one of the key steps at which RNA polymerase II-directed expression of protein-coding genes is regulated in eukaryotic cells. Different proteins have been shown to control this process, including the ELL/EAF family. ELL Associated Factors (EAFs) were first discovered in a yeast two-hybrid screen as interaction partners of the human ELL (Eleven nineteen Lysine-rich Leukemia) transcription elongation factor. Subsequently, they have been identified in different organisms, including Schizosaccharomyces pombe. However, no homolog(s) of EAF has as yet been characterized from plants. In the present work, we identified EAF orthologous sequences in different plants and have characterized two novel Arabidopsis thaliana EAF homologs, AtEAF-1 (At1g71080) and AtEAF-2 (At5g38050). Sequence analysis showed that both AtEAF-1 and AtEAF-2 exhibit similarity with its S. pombe EAF counterpart. Moreover, both Arabidopsis thaliana and S. pombe EAF orthologs share conserved sequence characteristic features. Computational tools also predicted a high degree of disorder in regions towards the carboxyl terminus of these EAF proteins. We demonstrate that AtEAF-2, but not AtEAF-1 functionally complements growth deficiencies of Schizosaccharomyces pombe eaf mutant. We also show that only AtEAF-1 displays transactivation potential resembling the S. pombe EAF ortholog. Subsequent expression analysis in A. thaliana showed that both homologs were expressed at varying levels during different developmental stages and in different tissues tested in the study. Individual null-mutants of either AtEAF-1 or AtEAF-2 are developmentally normal implying their functional redundancy. Taken together, our results provide first evidence that A. thaliana also possesses functional EAF proteins, suggesting an evolutionary conservation of these proteins across organisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Elongação da Transcrição , Humanos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
7.
J Exp Bot ; 72(18): 6640-6658, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34145454

RESUMO

The attachment of SMALL UBIQUITIN-LIKE MODIFIER (SUMO) to target proteins regulates a plethora of cellular processes across eukaryotes. In Arabidopsis thaliana, mutants with abnormal SUMO1/2 conjugate levels display a dwarf stature, autoimmunity, and altered stress responses to adverse environmental conditions. Since the SUMO pathway is known to autoregulate its biochemical activity (via allosteric interactions), we assessed whether the emergence of additional SUMO paralogs in Arabidopsis has introduced the capacity of self-regulation by means of isoform diversification in this model plant. By studying the plant defense responses elicited by the bacterial pathogen Pseudomonas syringae pv. tomato, we provide genetic evidence that SUM3, a divergent paralog, acts downstream of the two main SUMO paralogues, SUM1/2. The expression of SUM3 apparently buffers or suppresses the function of SUM1/2 by controlling the timing and amplitude of the immune response. Moreover, SUM1 and SUM2 work additively to suppress both basal and TNL-specific immunity, a specific branch of the immune network. Finally, our data reveal that SUM3 is required for the global increase in SUMO1/2 conjugates upon exposure to biotic and abiotic stresses, namely heat and pathogen exposure. We cannot exclude that this latter effect is independent of the role of SUM3 in immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunidade Vegetal/genética , Isoformas de Proteínas , Pseudomonas syringae , Ubiquitina
8.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299060

RESUMO

Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1's contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.


Assuntos
Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Degradação do RNAm Mediada por Códon sem Sentido , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência
9.
PLoS Pathog ; 14(3): e1006984, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29601603

RESUMO

Bacterial effector proteins secreted into host plant cells manipulate those cells to the benefit of the pathogen, but effector-triggered immunity (ETI) occurs when effectors are recognized by host resistance proteins. The RPS4/RRS1 pair recognizes the Pseudomonas syringae pv. pisi effector AvrRps4. AvrRps4 is processed in planta into AvrRps4N (133 amino acids), homologous to the N-termini of other effectors including the native P. syringae pv. tomato strain DC3000 effector HopK1, and AvrRps4C (88 amino acids). Previous data suggested that AvrRps4C alone is necessary and sufficient for resistance when overexpressed in heterologous systems. We show that delivering AvrRps4C from DC3000, but not from a DC3000 hopK1- strain, triggers resistance in the Arabidopsis accession Col-0. Delivering AvrRps4C in tandem with AvrRps4N, or as a chimera with HopK1N, fully complements AvrRps4-triggered immunity. AvrRps4N in the absence of AvrRps4C enhances virulence in Col-0. In addition, AvrRps4N triggers a hypersensitive response in lettuce that is attenuated by coexpression of AvrRps4C, further supporting the role of AvrRps4N as a bona fide effector domain. Based on these results we propose that evolutionarily, fusion of AvrRps4C to AvrRps4N may have counteracted recognition of AvrRps4N, and that the plant RPS4/RRS1 resistance gene pair was selected as a countermeasure. We conclude that AvrRps4 represents an unusual chimeric effector, with recognition in Arabidopsis by RPS4/RRS1 requiring the presence of both processed effector moieties.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Virulência , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/imunologia
10.
Electrophoresis ; 41(7-8): 578-587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31743466

RESUMO

A soft nanochannel involves a soft interface that contains a polyelectrolyte layer (PEL) sandwiched between a rigid surface and a bulk electrolyte solution. Mass transfer of a neutral solute in a combined electroosmotic and pressure driven flow through a polyelectrolyte grafted charged nanochannel with porous wall is presented in this work. Assuming the PEL as fixed charged layer and PEL-electrolyte interface as a semi-penetrable membrane, analytical solutions were obtained for potential distributions (for small wall potential). Velocity profiles were also derived in the same domains, for both inside and outside the PEL. Convective-diffusive species balance equation was semi-analytically solved inside the PEL. Expression of length averaged Sherwood number was also obtained and effects of different parameters, namely, drag parameter (α), Debye parameter (κ¯) , and PEL thickness were studied in detail. The variation of permeate concentration and permeation flux across the porous wall was obtained.


Assuntos
Eletro-Osmose/métodos , Nanotecnologia/instrumentação , Polieletrólitos/química , Porosidade , Soluções , Eletricidade Estática
11.
Electrophoresis ; 40(5): 720-729, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30362567

RESUMO

Transport of salt through the wall of porous microtube is relevant in various physiological microcirculation systems. Transport phenomena based modeling of such system is undertaken in the present study considering a combined driving force consisting of pressure gradient and external electric field. Transport of salt is modeled in two domains, in the flow conduit and in the pores of porous wall of the microtube. The solute transport in the microtube is presented by convective-diffusive mass balance and it is solved using integral method under the framework of boundary layer analysis. The wall of the microtube is considered to be consisting of series of straight parallel cylindrical pores with charged inner surface. The solute transport through the pores is considered to be composed of diffusive, convective and electric potential gradient governed by Nernst-Planck equation. Transport in the microtube and pores is coupled through the osmotic pressure model for the solvent and Donnan equilibrium distribution for the solute. The simulated results agree remarkably well with the experimental data conducted by in-house experimental set up. The charge density of the porous wall is estimated through the minimization of errors involved between the experimental and simulated data for different operating conditions.


Assuntos
Eletrólitos/química , Eletro-Osmose , Microfluídica , Simulação por Computador , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Químicos , Porosidade , Cloreto de Sódio/química
12.
Int J Legal Med ; 132(6): 1641-1644, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30143861

RESUMO

We have analyzed haplotypes for 17 Y chromosomal STR loci in Bangladeshi mainstream Bengali population and four largest ethnic groups inhabiting the North-Eastern and Southern region of Bangladesh using AmpFlSTR® Yfiler® PCR amplification systems. A total of 667 haplotypes from Bangladeshi Bangali, 157 from Rakhine, 144 from Marma, 112 from Hajong, and 136 from Manipuri individuals were observed with corresponding discrimination capacity (DC) of 0.973 for Bengali, 0.723 for Rakhine, 0.743 for Marma, 0.794 for Hajong, and 0.720 for Manipuri groups, respectively. In order to investigate genetic relationship and the pattern of paternal contributions of the studied population, a comparison of the studied data with the published data from Y-STR haplotype reference database (YHRD) was conducted based on analysis of molecular variance (AMOVA). Construction of neighbour-joining tree revealed that the Rakhine population lies closer to a clade consisting, Korean and Japanese population. The Hajong population showed close affinity with Riang (Tripura, India) tribe followed by Marma population. On the other hand, Manipuri group is closely related to Thai population followed by Tamil and mainstream Bengali population.


Assuntos
Cromossomos Humanos Y , Etnicidade/genética , Genética Populacional , Repetições de Microssatélites , Filogenia , Bangladesh , Impressões Digitais de DNA , Frequência do Gene , Haplótipos , Humanos , Masculino , Reação em Cadeia da Polimerase
13.
Med J Armed Forces India ; 74(4): 407-409, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30449935

RESUMO

Neurofibromatosis is a neurocutaneous, tumor predisposing, inheritable disorder characterized by tumors of the brain and spine and the presence of skin lesions. The most important tumors associated with neurofibromatosis are vestibular nerve schwannomas, with others being meningiomas and ependymomas. The cord is also affected by tumors, ependymoma being the commonest, besides meningiomas and schwannomas. We present a case with café au lait macules, neurofibromas in the skin, bilateral VIII cranial nerve schwannomas, multiple meningiomas in the brain and spine, ependymomas in the brain and spine, and schwannomas in the cauda equina nerve roots.

14.
Electrophoresis ; 38(9-10): 1301-1309, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28256729

RESUMO

Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye-Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential -73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant.


Assuntos
Microfluídica/instrumentação , Microfluídica/métodos , Modelos Teóricos , Porosidade , Eletricidade , Concentração de Íons de Hidrogênio , Peso Molecular , Reprodutibilidade dos Testes
15.
J Exp Bot ; 67(8): 2353-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26889008

RESUMO

Plant NB-LRR proteins confer resistance to multiple pathogens, including viruses. Although the recognition of viruses by NB-LRR proteins is highly specific, previous studies have suggested that NB-LRR activation results in a response that targets all viruses in the infected cell. Using an inducible system to activate NB-LRR defenses, we find that NB-LRR signaling does not result in the degradation of viral transcripts, but rather prevents them from associating with ribosomes and translating their genetic material. This indicates that defense against viruses involves the repression of viral RNA translation. This repression is specific to viral transcripts and does not involve a global shutdown of host cell translation. As a consequence of the repression of viral RNA translation, NB-LRR responses induce a dramatic increase in the biogenesis of RNA processing bodies (PBs). We demonstrate that other pathways that induce translational repression, such as UV irradiation and RNAi, also induce PBs. However, by investigating the phosphorylation status of eIF2α and by using suppressors of RNAi we show that the mechanisms leading to PB induction by NB-LRR signaling are different from these stimuli, thus defining a distinct type of translational control and anti-viral mechanism in plants.


Assuntos
Proteínas NLR/metabolismo , Biossíntese de Proteínas/efeitos da radiação , Interferência de RNA/efeitos da radiação , Processamento Pós-Transcricional do RNA/efeitos da radiação , RNA Viral/genética , Transdução de Sinais , Estresse Fisiológico/efeitos da radiação , Raios Ultravioleta , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Potexvirus/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Reprodutibilidade dos Testes , Nicotiana/genética
16.
Med J Armed Forces India ; 72(Suppl 1): S77-S79, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28050077

RESUMO

Retrocaval ureter or circumcaval ureter is a rare congenital abnormality arising from dysgenesis of the inferior vena cava (IVC) that results in the right ureter coursing behind and medial to the IVC. The ideal nomenclature for the anomaly is preureteral vena cava, keeping in mind the aberrant embryology. It can result in hydronephrosis and is a rare cause of long-standing cyclical pain abdomen. Ultrasound, intravenous urography, nuclear scintigraphy, computed tomography urography (CTU) and magnetic resonance urography (MRU) have been used in the diagnosis of this abnormality but CTU, with its ability to depict the abnormality in three dimensions gives the most "wholesome" solution to its diagnosis. When symptomatic, the condition is treated surgically, either by laparoscopic or open surgery. The characteristic imaging findings that can help clinch the diagnosis are described as a reminder for this infrequently encountered cause for pain abdomen and hydronephrosis.

17.
Plant J ; 78(6): 978-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24689742

RESUMO

The plant immune system must be tightly controlled both positively and negatively to maintain normal plant growth and health. We previously identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator specifically of effector-triggered immunity. SRFR1 is localized in both a cytoplasmic microsomal compartment and in the nucleus. Its TPR domain has sequence similarity to TPR domains of transcriptional repressors in other organisms, suggesting that SRFR1 may negatively regulate effector-triggered immunity via transcriptional control. We show here that excluding SRFR1 from the nucleus prevented complementation of the srfr1 phenotype. To identify transcription factors that interact with SRFR1, we screened an Arabidopsis transcription factor prey library by yeast two-hybrid assay and isolated six class I members of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor family. Specific interactions were verified in planta. Although single or double T-DNA mutant tcp8, tcp14 or tcp15 lines were not more susceptible to bacteria expressing AvrRps4, the triple tcp8 tcp14 tcp15 mutant displayed decreased effector-triggered immunity mediated by the resistance genes RPS2, RPS4, RPS6 and RPM1. In addition, expression of PATHOGENESIS-RELATED PROTEIN2 was attenuated in srfr1-4 tcp8-1 tcp14-5 tcp15-3 plants compared to srfr1-4 plants. To date, TCP transcription factors have been implicated mostly in developmental processes. Our data indicate that one function of a subset of TCP proteins is to regulate defense gene expression in antagonism to SRFR1, and suggest a mechanism for an intimate connection between plant development and immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Imunidade Vegetal/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Núcleo Celular/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/imunologia , Transporte Proteico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Técnicas do Sistema de Duplo-Híbrido
18.
IUBMB Life ; 67(7): 524-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26177826

RESUMO

In its lifetime a plant is exposed to pathogens of diverse types. Although methods of surveillance are broadly pathogen-individualized, immune signaling ultimately connect to common core networks maintained by key protein hubs. Defense elicitations modulate these hubs to re-allocate energy from central metabolic pathway into processes that execute immunity. Because unregulated defenses severely decrease growth and productivity of the host, signaling regulators within the networks function to achieve cellular equilibrium once the threat is minimized. Protein modifications by post-translational processes regulate the molecular switches and crosstalks between interconnected pathways spatially and temporally. Covalent modification of host targets connected to hubs are strategies used by most virulent effectors and result in re-routing signals to suppress host defenses. Resistance is a result of activation of specialized classes of receptors that short-circuit effector activities by co-localizing via post-translational modifications (PTMs) with effector targets. Despite advancement in proteome methodologies, our understanding of how PTMs regulate plant defenses remains elusive. This review presents protein-modifications as forefront regulators of plant innate immunity.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Acilação , Cisteína Proteases/metabolismo , Proteínas Ligadas por GPI/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Fosforilação , Plantas/imunologia , Plantas/microbiologia , Transdução de Sinais , Sumoilação , Ubiquitinação
19.
Plant Cell ; 24(12): 5177-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275581

RESUMO

In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/genética , Raízes de Plantas/genética , Transdução de Sinais/genética
20.
Biotechnol Biofuels Bioprod ; 17(1): 73, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822388

RESUMO

BACKGROUND: Lignin and xylan are important determinants of cell wall structure and lignocellulosic biomass digestibility. Genetic manipulations that individually modify either lignin or xylan structure improve polysaccharide digestibility. However, the effects of their simultaneous modifications have not been explored in a similar context. Here, both individual and combinatorial modification in xylan and lignin was studied by analysing the effect on plant cell wall properties, biotic stress responses and integrity sensing. RESULTS: Arabidopsis plant co-harbouring mutation in FERULATE 5-HYDROXYLASE (F5H) and overexpressing Aspergillus niger acetyl xylan esterase (35S:AnAXE1) were generated and displayed normal growth attributes with intact xylem architecture. This fah1-2/35S:AnAXE1 cross was named as hyper G lignin and hypoacetylated (HrGHypAc) line. The HrGHypAc plants showed increased crystalline cellulose content with enhanced digestibility after chemical and enzymatic pre-treatment. Moreover, both parents and HrGHypAc without and after pre-treating with glucuronyl esterase and alpha glucuronidase exhibited an increase in xylose release after xylanase digestion as compared to wild type. The de-pectinated fraction in HrGHypAc displayed elevated levels of xylan and cellulose. Furthermore, the transcriptomic analysis revealed differential expression in cell wall biosynthetic, transcription factors and wall-associated kinases genes implying the role of lignin and xylan modification on cellular regulatory processes. CONCLUSIONS: Simultaneous modification in xylan and lignin enhances cellulose content with improved saccharification efficiency. These modifications loosen cell wall complexity and hence resulted in enhanced xylose and xylobiose release with or without pretreatment after xylanase digestion in both parent and HrGHypAc. This study also revealed that the disruption of xylan and lignin structure is possible without compromising either growth and development or defense responses against Pseudomonas syringae infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA