Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(11): 5434-8, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539480

RESUMO

A macrocyclic trichromophore bundle 1 with parallel-aligned dipole moments has been synthesized to study the influence of aggregation and orientation of a nonlinear optical (NLO) chromophore on its optical properties. The linear and nonlinear optical properties of 1 and a single chromophore standard 2 have been studied by UV-vis absorption, fluorescence, solvatochromic spectrometry, and hyper-Rayleigh scattering (HRS). Reduced first-order hyperpolarizability beta, hypsochromic shift, enhanced solvatochromic shifts, and fluorescence quenching for individual chromophores were observed when 1 was compared with 2. Analysis of the data showed that the transition dipole moment changes only slightly when the chromophores are parallel aligned in the bundle architecture. However, the apparent hyperpolarizability of the individual chromophores decreased significantly by about 20%. The reduction in beta for the individual chromophores in 1 is largely due to the hypsochromic shift, i.e., excitation energy increase of the interband (charge-transfer) energy gap and the reduced difference between the ground-state and excited-state dipole moments. The hypsochromic shift and fluorescence quenching are consistent with exciton theory. Possible reasons for the enhanced solvatochromic shift are discussed.

2.
J Am Chem Soc ; 128(21): 6847-53, 2006 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-16719465

RESUMO

Efficient noncentrosymmetric arrangement of nonlinear optical (NLO) chromophores with high first-order hyperpolarizability (beta) for increased electro-optical (EO) efficiency has proven challenging as strong dipolar interactions between the chromophores encourage antiparallel alignment, attenuating the macroscopic EO effect. This work explores a novel approach to simultaneously achieve large beta values while providing an adjustable dipole moment by linking a strong neutral-ground-state (NGS) NLO chromophore with positive beta to a zwitterionic (ZWI) chromophore with negative beta in an antiparallel fashion. It is proposed that the overall beta of such a structure will be the sum of the absolute values of the two types of chromophores while the dipole moment will be the difference. Molecules 1-3 were synthesized to test the feasibility of this approach. Molecular dynamics calculations and NMR data supported that the NGS chromophore component and the ZWI chromophore component self-assemble to an antiparallel conformation in chloroform. Calculations showed that the dipole moment of 1 is close to the difference of the two component chromophores. Hyper-Rayleigh scattering (HRS) studies confirmed that the first hyperpolarizability of 1 is close to the sum of the two component chromophores. These results support the idea that an antiparallel-aligned neutral-ground-state chromophore and a zwitterionic chromophore can simultaneously achieve an increase in beta and a decrease of the dipole moment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA