Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(24): 10010-10017, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36480011

RESUMO

Interconnected magnetic nanowire (NW) networks offer a promising platform for three-dimensional (3D) information storage and integrated neuromorphic computing. Here we report discrete propagation of magnetic states in interconnected Co nanowire networks driven by magnetic field and current, manifested in distinct magnetoresistance (MR) features. In these networks, when only a few interconnected NWs were measured, multiple MR kinks and local minima were observed, including a significant minimum at a positive field during the descending field sweep. Micromagnetic simulations showed that this unusual feature was due to domain wall (DW) pinning at the NW intersections, which was confirmed by off-axis electron holography imaging. In a complex network with many intersections, sequential switching of nanowire sections separated by interconnects was observed, along with stochastic characteristics. The pinning/depinning of the DWs can be further controlled by the driving current density. These results illustrate the promise of such interconnected networks as integrated multistate memristors.

2.
Nanotechnology ; 31(14): 145201, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31842010

RESUMO

An energy-efficient voltage-controlled domain wall (DW) device for implementing an artificial neuron and synapse is analyzed using micromagnetic modeling in the presence of room temperature thermal noise. By controlling the DW motion utilizing spin transfer or spin-orbit torques in association with voltage generated strain control of perpendicular magnetic anisotropy in the presence of Dzyaloshinskii-Moriya interaction, different positions of the DW are realized in the free layer of a magnetic tunnel junction to program different synaptic weights. The feasibility of scaling of such devices is assessed in the presence of thermal perturbations that compromise controllability. Additionally, an artificial neuron can be realized by combining this DW device with a CMOS buffer. This provides a possible pathway to realize energy-efficient voltage-controlled nanomagnetic deep neural networks that can learn in real time.

3.
Nanotechnology ; 29(44): 442001, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30052200

RESUMO

The need for increasingly powerful computing hardware has spawned many ideas stipulating, primarily, the replacement of traditional transistors with alternate 'switches' that dissipate miniscule amounts of energy when they switch and provide additional functionality that are beneficial for information processing. An interesting idea that has emerged recently is the notion of using two-phase (piezoelectric/magnetostrictive) multiferroic nanomagnets with bistable (or multi-stable) magnetization states to encode digital information (bits), and switching the magnetization between these states with small voltages (that strain the nanomagnets) to carry out digital information processing. The switching delay is ∼1 ns and the energy dissipated in the switching operation can be few to tens of aJ, which is comparable to, or smaller than, the energy dissipated in switching a modern-day transistor. Unlike a transistor, a nanomagnet is 'non-volatile', so a nanomagnetic processing unit can store the result of a computation locally without refresh cycles, thereby allowing it to double as both logic and memory. These dual-role elements promise new, robust, energy-efficient, high-speed computing and signal processing architectures (usually non-Boolean and often non-von-Neumann) that can be more powerful, architecturally superior (fewer circuit elements needed to implement a given function) and sometimes faster than their traditional transistor-based counterparts. This topical review covers the important advances in computing and information processing with nanomagnets, with emphasis on strain-switched multiferroic nanomagnets acting as non-volatile and energy-efficient switches-a field known as 'straintronics'. It also outlines key challenges in straintronics.

4.
Nanotechnology ; 28(42): 425201, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726688

RESUMO

Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.

5.
Nanotechnology ; 28(1): 015202, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27893454

RESUMO

Micromagnetic studies of the magnetization change in magnetostrictive nanomagnets subjected to stress are performed for nanomagnets of different sizes. The interplay between demagnetization, exchange and stress anisotropy energies is used to explain the rich physics of size-dependent magnetization dynamics induced by modulating stress anisotropy in planar nanomagnets. These studies have important implications for strain mediated ultralow energy magnetization control in nanomagnets and its application in energy-efficient nanomagnetic computing devices.

6.
Nano Lett ; 16(9): 5681-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27564572

RESUMO

We report experimental manipulation of the magnetic states of elliptical cobalt magnetostrictive nanomagnets (with nominal dimensions of ∼340 nm × 270 nm × 12 nm) delineated on bulk 128° Y-cut lithium niobate with acoustic waves (AWs) launched from interdigitated electrodes. Isolated nanomagnets (no dipole interaction with any other nanomagnet) that are initially magnetized with a magnetic field to a single-domain state with the magnetization aligned along the major axis of the ellipse are driven into a vortex state by acoustic waves that modulate the stress anisotropy of these nanomagnets. The nanomagnets remain in the vortex state until they are reset by a strong magnetic field to the initial single-domain state, making the vortex state nonvolatile. This phenomenon is modeled and explained using a micromagnetic framework and could lead to the development of extremely energy efficient magnetization switching methodologies for low-power computing applications.

7.
Sci Rep ; 11(1): 20914, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686742

RESUMO

Implementation of skyrmion based energy efficient and high-density data storage devices requires aggressive scaling of skyrmion size. Ferrimagnetic materials are considered to be a suitable platform for this purpose due to their low saturation magnetization (i.e. smaller stray field). However, this method of lowering the saturation magnetization and scaling the lateral size of skyrmions is only applicable where the skyrmions have a smaller lateral dimension compared to the hosting film. Here, we show by performing rigorous micromagnetic simulation that the size of skyrmions, which have lateral dimension comparable to their hosting nanodot can be scaled by increasing saturation magnetization. Also, when the lateral dimension of nanodot is reduced and thereby the skyrmion confined in it is downscaled, there remains a challenge in forming a stable skyrmion with experimentally observed Dzyaloshinskii-Moriya interaction (DMI) values since this interaction has to facilitate higher canting  per spin to complete a 360° rotation along the diameter. In our study, we found that skyrmions can be formed in 20 nm lateral dimension nanodots with high saturation magnetization (1.30-1.70 MA/m) and DMI values (~ 3 mJ/m2) that have been reported to date. This result could stimulate experiments on implementation of highly dense skyrmion devices. Additionally, using this, we show that voltage controlled magnetic anisotropy based switching mediated by an intermediate skyrmion state can be achieved in the soft layer of a ferromagnetic p-MTJ of lateral dimensions 20 nm with sub 1 fJ/bit energy in the presence of room temperature thermal noise with reasonable DMI ~ 3 mJ/m2.

8.
ACS Appl Mater Interfaces ; 10(20): 17455-17462, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29703079

RESUMO

We propose a two-terminal nanomagnetic memory element based on magnetization reversal of a perpendicularly magnetized nanomagnet employing a unipolar voltage pulse that modifies the perpendicular anisotropy of the system. Our work demonstrates that the presence of Dzyaloshinskii-Moriya interaction can create an alternative route for magnetization reversal that obviates the need for utilizing precessional magnetization dynamics as well as a bias magnetic field that are employed in traditional voltage control of magnetic anisotropy (VCMA)-based switching of perpendicular magnetization. We show with extensive micromagnetic simulation, in the presence of thermal noise, that the proposed skyrmion-mediated VCMA switching mechanism is robust at room temperature leading to extremely low error switching while also being potentially 1-2 orders of magnitude more energy efficient than state-of-the-art spin transfer torque-based switching.

9.
Sci Rep ; 6: 31272, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506159

RESUMO

Using micromagnetic simulations we demonstrate core reversal of a fixed magnetic skyrmion by modulating the perpendicular magnetic anisotropy of a nanomagnet with an electric field. We can switch reversibly between two skyrmion states and two ferromagnetic states, i.e. skyrmion states with the magnetization of the core pointing down/up and periphery pointing up/down, and ferromagnetic states with magnetization pointing up/down, by sequential increase and decrease of the perpendicular magnetic anisotropy. The switching between these states is explained by the fact that the spin texture corresponding to each of these stable states minimizes the sum of the magnetic anisotropy, demagnetization, Dzyaloshinskii-Moriya interaction (DMI) and exchange energies. This could lead to the possibility of energy efficient nanomagnetic memory and logic devices implemented with fixed skyrmions without using a magnetic field and without moving skyrmions with a current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA