Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
N Engl J Med ; 390(17): 1584-1596, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38692292

RESUMO

BACKGROUND: Congenital thrombotic thrombocytopenic purpura (TTP) results from severe hereditary deficiency of ADAMTS13. The efficacy and safety of recombinant ADAMTS13 and standard therapy (plasma-derived products) administered as routine prophylaxis or on-demand treatment in patients with congenital TTP is not known. METHODS: In this phase 3, open-label, crossover trial, we randomly assigned patients in a 1:1 ratio to two 6-month periods of prophylaxis with recombinant ADAMTS13 (40 IU per kilogram of body weight, administered intravenously) or standard therapy, followed by the alternate treatment; thereafter, all the patients received recombinant ADAMTS13 for an additional 6 months. The trigger for this interim analysis was trial completion by at least 30 patients. The primary outcome was acute TTP events. Manifestations of TTP, safety, and pharmacokinetics were assessed. Patients who had an acute TTP event could receive on-demand treatment. RESULTS: A total of 48 patients underwent randomization; 32 completed the trial. No acute TTP event occurred during prophylaxis with recombinant ADAMTS13, whereas 1 patient had an acute TTP event during prophylaxis with standard therapy (mean annualized event rate, 0.05). Thrombocytopenia was the most frequent TTP manifestation (annualized event rate, 0.74 with recombinant ADAMTS13 and 1.73 with standard therapy). Adverse events occurred in 71% of the patients with recombinant ADAMTS13 and in 84% with standard therapy. Adverse events that were considered by investigators to be related to the trial drug occurred in 9% of the patients with recombinant ADAMTS13 and in 48% with standard therapy. Trial-drug interruption or discontinuation due to adverse events occurred in no patients with recombinant ADAMTS13 and in 8 patients with standard therapy. No neutralizing antibodies developed during recombinant ADAMTS13 treatment. The mean maximum ADAMTS13 activity after recombinant ADAMTS13 treatment was 101%, as compared with 19% after standard therapy. CONCLUSIONS: During prophylaxis with recombinant ADAMTS13 in patients with congenital TTP, ADAMTS13 activity reached approximately 100% of normal levels, adverse events were generally mild or moderate in severity, and TTP events and manifestations were rare. (Funded by Takeda Development Center Americas and Baxalta Innovations; ClinicalTrials.gov number, NCT03393975.).


Assuntos
Proteína ADAMTS13 , Púrpura Trombocitopênica Trombótica , Proteínas Recombinantes , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Proteína ADAMTS13/administração & dosagem , Proteína ADAMTS13/efeitos adversos , Proteína ADAMTS13/deficiência , Proteína ADAMTS13/genética , Estudos Cross-Over , Púrpura Trombocitopênica Trombótica/congênito , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Pré-Escolar
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612634

RESUMO

The functionalization of bone substitutes with exosomes appears to be a promising technique to enhance bone tissue formation. This study investigates the potential of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) to improve bone healing and bone augmentation when incorporated into wide open-porous 3D-printed ceramic Gyroid scaffolds. We demonstrated the multipotent characteristics of BMSCs and characterized the extracted exosomes using nanoparticle tracking analysis and proteomic profiling. Through cell culture experimentation, we demonstrated that BMSC-derived exosomes possess the ability to attract cells and significantly facilitate their differentiation into the osteogenic lineage. Furthermore, we observed that scaffold architecture influences exosome release kinetics, with Gyroid scaffolds exhibiting slower release rates compared to Lattice scaffolds. Nevertheless, in vivo implantation did not show increased bone ingrowth in scaffolds loaded with exosomes, suggesting that the scaffold microarchitecture and material were already optimized for osteoconduction and bone augmentation. These findings highlight the lack of understanding about the optimal delivery of exosomes for osteoconduction and bone augmentation by advanced ceramic scaffolds.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Medula Óssea , Proteômica , Engenharia Tecidual , Osso e Ossos , Cerâmica
3.
J Pharmacokinet Pharmacodyn ; 50(6): 445-459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37296230

RESUMO

Dose selection is an integral part of a molecule's journey to become medicine. On top of typical challenges faced in dose selection for more common diseases, pediatric rare disease has additional unique challenges due to the combination of 'rare' and 'pediatric' populations. Using the central theme of maximizing 'relevant' information to overcome information paucity, dose selection strategy in pediatric rare diseases is discussed using a triangulation concept involving challenges, approaches and very importantly, enablers. Using actual examples, unique scenarios are discussed where specific enablers allowed certain approaches to be used to overcome the challenges. The continued need for model-informed drug development is also discussed using examples of where modeling and simulation tools have been successfully used in bridging available information to select pediatric doses in rare disease. Additionally, challenges with translation and associated dose selection of new modalities such as gene therapy in rare diseases are examined with the lens of continuous learning and knowledge development that will enable pediatric dose selection of these modalities with confidence.


Assuntos
Desenvolvimento de Medicamentos , Doenças Raras , Criança , Humanos , Doenças Raras/tratamento farmacológico , Simulação por Computador
4.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983073

RESUMO

The early phase of bone healing is a complex and poorly understood process. With additive manufacturing, we can generate a specific and customizable library of bone substitutes to explore this phase. In this study, we produced tricalcium phosphate-based scaffolds with microarchitectures composed of filaments of 0.50 mm in diameter, named Fil050G, and 1.25 mm named Fil125G, respectively. The implants were removed after only 10 days in vivo followed by RNA sequencing (RNAseq) and histological analysis. RNAseq results revealed upregulation of adaptive immune response, regulation of cell adhesion, and cell migration-related genes in both of our two constructs. However, significant overexpression of genes linked to angiogenesis, regulation of cell differentiation, ossification, and bone development was observed solely in Fil050G scaffolds. Moreover, quantitative immunohistochemistry of structures positive for laminin revealed a significantly higher number of blood vessels in Fil050G samples. Furthermore, µCT detected a higher amount of mineralized tissue in Fil050G samples suggesting a superior osteoconductive potential. Hence, different filament diameters and distances in bone substitutes significantly influence angiogenesis and regulation of cell differentiation involved in the early phase of bone regeneration, which precedes osteoconductivity and bony bridging seen in later phases and as consequence, impacts the overall clinical outcome.


Assuntos
Substitutos Ósseos , Alicerces Teciduais , Alicerces Teciduais/química , Substitutos Ósseos/química , Transcriptoma , Osso e Ossos , Osteogênese/genética , Regeneração Óssea/genética , Diferenciação Celular/genética , Fosfatos de Cálcio/farmacologia , Impressão Tridimensional
5.
Nano Lett ; 20(4): 2756-2762, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32119550

RESUMO

Structural transformations near surfaces of solid-state materials underpin functional mechanisms of a broad range of applications including catalysis, memory, and energy storage. It has been a long-standing notion that the outermost free surfaces, accompanied by broken translational symmetry and altered atomic configurations, are usually the birthplace for structural transformations. Here, in a layered oxide cathode for Li-ion batteries, we for the first time observe the incipient state of the well-documented layered-to-spinel-like structural transformation, which is surprisingly initiated from the subsurface layer, rather than the very surface. Coupling atomic level scanning transmission electron microscopy imaging with electron energy loss spectroscopy, we discover that the reconstructed subsurfaces, featuring a mix of discrete patches of layered and spinel-like structures, are associated with selective atomic species partition and consequent nanoscale nonuniform composition gradient distribution at the subsurface. Our findings provide fundamental insights on atomic-scale mechanisms of structural transformation in layered cathodes.

6.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681710

RESUMO

The human skeleton is a dynamic and remarkably organized organ system that provides mechanical support and performs a variety of additional functions. Bone tissue undergoes constant remodeling; an essential process to adapt architecture/resistance to growth and mechanical needs, but also to repair fractures and micro-damages. Despite bone's ability to heal spontaneously, certain situations require an additional stimulation of bone regeneration, such as non-union fractures or after tumor resection. Among the growth factors used to increase bone regeneration, bone morphogenetic protein-2 (BMP2) is certainly the best described and studied. If clinically used in high quantities, BMP2 is associated with various adverse events, including fibrosis, overshooting bone formation, induction of inflammation and swelling. In previous studies, we have shown that it was possible to reduce BMP2 doses significantly, by increasing the response and sensitivity to it with small molecules called "BMP2 enhancers". In the present study, we investigated the effect of N-Vinyl-2-pyrrolidone (NVP) on osteoblast and osteoclast differentiation in vitro and guided bone regeneration in vivo. We showed that NVP increases BMP2-induced osteoblast differentiation and decreases RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, in a rabbit calvarial defect model, the histomorphometric analysis revealed that bony bridging and bony regenerated area achieved with NVP-loaded poly (lactic-co-glycolic acid (PLGA) membranes were significantly higher compared to unloaded membranes. Taken together, our results suggest that NVP sensitizes BMP2-dependent pathways, enhances BMP2 effect, and inhibits osteoclast differentiation. Thus, NVP could prove useful as "osteopromotive substance" in situations where a high rate of bone regeneration is required, and in the management of bone diseases associated with excessive bone resorption, like osteoporosis.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Pirrolidinonas/farmacologia , Animais , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/patologia , Proteína Morfogenética Óssea 2/agonistas , Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pirrolidinonas/química , Pirrolidinonas/uso terapêutico , Ligante RANK/farmacologia , Coelhos , Proteína Smad1/metabolismo
7.
Br J Clin Pharmacol ; 86(4): 812-824, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31758576

RESUMO

AIMS: Human genetic, tissue expression, proteomics, transcriptomics and nonclinical studies implicate tumour necrosis factor α-like ligand 1A (TL1A) as a novel target in inflammatory bowel disease (IBD). PF-06480605, a fully human immunoglobulin G1 monoclonal antibody, targets TL1A. This first-in-human, Phase 1, dose-escalation study assessed safety, tolerability, pharmacokinetics, pharmacodynamics and immunogenicity of intravenous (IV) and subcutaneous (SC) PF-06480605 in healthy subjects (NCT01989143). METHODS: Ninety-two subjects were randomized to single ascending doses (SAD), PF-06480605 1 mg, 3 mg, 10 mg, 30 mg, 100 mg, 300 mg, 600 mg or 800 mg IV, or multiple ascending doses (MAD), PF-06480605 3 × 500 mg IV, or 3 × 30 mg, 3 × 100 mg, or 3 × 300 mg SC every 2 weeks for three doses, or placebo. Safety, tolerability, pharmacokinetics, immunogenicity profiles and total TL1A, anti-drug antibody (ADA) and neutralizing antibody (NAb) levels were assessed at pre-determined times. RESULTS: PF-06480605 SAD up to 800 mg IV and MAD up to 300 mg ×3 SC and 500 mg ×3 IV were well tolerated. Overall, there were 45 and 44 treatment-emergent adverse events in SAD and MAD cohorts, respectively, and no deaths or serious adverse events. PF-06480605 exposure generally increased dose-dependently. ADA and NAb levels did not impact safety, pharmacokinetics, or pharmacodynamics at higher doses. Target engagement was demonstrated through dose-dependent differences in serum total soluble TL1A concentrations for PF-06480605 vs placebo cohorts. CONCLUSIONS: PF-06480605 was generally well tolerated, and binding of soluble TL1A was maintained throughout the dose interval, supporting further study of PF-06480605 in patients with IBD and other inflammatory conditions.


Assuntos
Anticorpos Neutralizantes , Antineoplásicos Imunológicos , Administração Intravenosa , Anticorpos Monoclonais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Voluntários Saudáveis , Humanos
8.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291724

RESUMO

Additive manufacturing is a key technology required to realize the production of a personalized bone substitute that exactly meets a patient's need and fills a patient-specific bone defect. Additive manufacturing can optimize the inner architecture of the scaffold for osteoconduction, allowing fast and reliable defect bridging by promoting rapid growth of new bone tissue into the scaffold. The role of scaffold microporosity/nanoarchitecture in osteoconduction remains elusive. To elucidate this relationship, we produced lithography-based osteoconductive scaffolds from tricalcium phosphate (TCP) with identical macro- and microarchitecture, but varied their nanoarchitecture/microporosity by ranging maximum sintering temperatures from 1000 °C to 1200 °C. After characterization of the different scaffolds' microporosity, compression strength, and nanoarchitecture, we performed in vivo studies that showed that ingrowth of bone as an indicator of osteoconduction significantly decreased with decreasing microporosity. Moreover, at the 1200 °C peak sinter temperature and lowest microporosity, osteoclastic degradation of the material was inhibited. Thus, even for wide-open porous TCP-based scaffolds, a high degree of microporosity appears to be essential for optimal osteoconduction and creeping substitution, which can prevent non-unions, the major complication during bone regeneration procedures.


Assuntos
Reabsorção Óssea , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Osteoclastos/metabolismo , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Força Compressiva , Teste de Materiais , Osteoclastos/citologia , Porosidade , Próteses e Implantes , Engenharia Tecidual/métodos
9.
Biochem Biophys Res Commun ; 473(1): 317-322, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27016480

RESUMO

In adipose tissue mTOR complex 2 (mTORC2) contributes to the regulation of glucose/lipid metabolism and inflammatory molecule expression. Both processes display diurnal variations during the course of the day. RICTOR and mSIN1 are unique and essential components of mTORC2, which is activated by growth factors including insulin. To assess whether mTORC2 components display diurnal variations, we analyzed steady state mRNA expression levels of Rictor, mSin1, and mTor in various adipose tissues during a 24 h period. Diurnally regulated expression of Rictor was detected in brown adipose tissues displaying highest mRNA expression levels at the beginning of the 12 h light period (zeitgeber time 2, ZT2). Gene expression patterns of mSin1 and mTor displayed a similar diurnal regulation as Rictor in PVAT while smaller changes were detected for these genes in aorta during the course of the day. Basal mTORC2 activity was measured by phosphorylation of protein kinase C (PKC) α at serine 657 was higher at ZT14 as compared with ZT2 in PVAT. In line, gene expression of inflammatory molecules nitric oxide synthase 2 and tumor necrosis factor α was lower at ZT 14 compared to ZT2. Our findings provide evidence for a diurnal regulation of expression of mTORC2 components and activity. Hence, mTORC2 is possibly an integral part of diurnally regulated signaling pathways in PVAT and possibly in other adipose tissues.


Assuntos
Tecido Adiposo Marrom/fisiologia , Proteínas de Transporte/fisiologia , Regulação da Expressão Gênica , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Aorta/metabolismo , Ritmo Circadiano , Perfilação da Expressão Gênica , Inflamação , Insulina/metabolismo , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteína Companheira de mTOR Insensível à Rapamicina , Transgenes , Fator de Necrose Tumoral alfa/metabolismo
10.
Transfus Med Hemother ; 43(5): 336-343, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27781021

RESUMO

2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules.

11.
Biochem Biophys Res Commun ; 461(2): 287-92, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25881506

RESUMO

Obesity involves hypoxic adipose tissue and low-grade chronic inflammation. We investigated the impact of hypoxia on inflammatory response to TNF-α in white and brown adipocytes. In response to TNF-α, the expression of the inducible enzymes iNOS and COX-2 was prominently and selectively potentiated during hypoxia while only moderately under normoxia. Levels of their products, nitrite and prostaglandinE2 were elevated accordingly. NS398, a selective COX-2 inhibitor, reduced nitrite levels. The expression of PGC-1α, a transcriptional co-activator involved in mitochondrial biogenesis, and PPARγ, a transcription factor involved in adipocyte homeostasis, was reduced by TNF-α during hypoxia. These results suggest that hypoxia potentiates the inflammatory response by TNF-α in both white and brown adipocytes and downregulates the transcription factors involved in adipocyte function.


Assuntos
Adipócitos/imunologia , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica , Hipóxia/imunologia , Óxido Nítrico Sintase Tipo II/genética , Fator de Necrose Tumoral alfa/imunologia , Adipócitos/metabolismo , Adipócitos/patologia , Adipócitos Marrons/imunologia , Adipócitos Marrons/metabolismo , Adipócitos Marrons/patologia , Adipócitos Brancos/imunologia , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Animais , Hipóxia Celular , Linhagem Celular , Ciclo-Oxigenase 2/análise , Hipóxia/genética , Hipóxia/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Óxido Nítrico Sintase Tipo II/análise
12.
Biochim Biophys Acta ; 1831(7): 1208-16, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24046861

RESUMO

Increased triglyceride accumulation in adipocytes caused by a misbalance between energy intake and energy consumption, results in increased adipocyte size, excess adipose tissue, increased body weight and ultimately, obesity. It is well established that enlarged adipocytes exhibit malfunctions that contribute to whole body insulin resistance, a key factor for the development of type 2 diabetes. However, the underlying molecular cause for dysfunctional adipocyte behavior and signaling is poorly understood. Since the adipocyte cell surface proteome, or surfaceome, represents the cellular signaling gateway to the microenvironment, we studied the contribution of this subproteome to adipocyte malfunctions in obesity. By using the chemoproteomic Cell Surface Capture (CSC) technology, we established surfaceome maps of primary adipocytes derived from different mouse models for metabolic disorders. Relative quantitative comparison between these surfaceome maps revealed a set of cell surface glycoproteins with modulated location-specific abundance levels. RNAi mediated targeting of a subset of the detected obesity modulated cell surface glycoproteins in an in vitro model system provided functional evidence for their role in adiponectin secretion and the lipolytic activity of adipocytes. Thus, we conclude that the identified cell surface glycoproteins which exhibit obesity induced abundance changes and impact adipocyte function at the same time contribute to adipocyte malfunction in obesity. The regulation of their concerted activities could improve adipocyte function in obesity.


Assuntos
Adipócitos/patologia , Glicoproteínas de Membrana/metabolismo , Obesidade/patologia , Adipócitos/metabolismo , Adiponectina/metabolismo , Animais , Células Cultivadas , Lipólise , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 33(9): 2105-11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23868942

RESUMO

OBJECTIVE: Perivascular adipose tissue (PVAT) wraps blood vessels and modulates vasoreactivity by secretion of vasoactive molecules. Mammalian target of rapamycin complex 2 (mTORC2) has been shown to control inflammation and is expressed in adipose tissue. In this study, we investigated whether adipose-specific deletion of rictor and thereby inactivation of mTORC2 in PVAT may modulate vascular function by increasing inflammation in PVAT. APPROACH AND RESULTS: Rictor, an essential mTORC2 component, was deleted specifically in mouse adipose tissue (rictor(ad-/-)). Phosphorylation of mTORC2 downstream target Akt at Serine 473 was reduced in PVAT from rictor(ad-/-) mice but unaffected in aortic tissue. Ex vivo functional analysis of thoracic aortae revealed increased contractions and impaired dilation in rings with PVAT from rictor(ad-/-) mice. Adipose rictor knockout increased gene expression and protein release of interleukin-6, macrophage inflammatory protein-1α, and tumor necrosis factor-α in PVAT as shown by quantitative real-time polymerase chain reaction and Bioplex analysis for the cytokines in the conditioned media, respectively. Moreover, gene and protein expression of inducible nitric oxide synthase was upregulated without affecting macrophage infiltration in PVAT from rictor(ad-/-) mice. Inhibition of inducible nitric oxide synthase normalized vascular reactivity in aortic rings from rictor(ad-/-) mice with no effect in rictor(fl/fl) mice. Interestingly, in perivascular and epididymal adipose depots, high-fat diet feeding induced downregulation of rictor gene expression. CONCLUSIONS: Here, we identify mTORC2 as a critical regulator of PVAT-directed protection of normal vascular tone. Modulation of mTORC2 activity in adipose tissue may be a potential therapeutic approach for inflammation-related vascular damage.


Assuntos
Tecido Adiposo/metabolismo , Aorta Torácica/metabolismo , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Vasoconstrição , Vasodilatação , Células 3T3-L1 , Tecido Adiposo/imunologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/imunologia , Proteínas de Transporte/genética , Quimiocina CCL3/metabolismo , Meios de Cultivo Condicionados/metabolismo , Citocinas/genética , Dieta Hiperlipídica , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inflamação/imunologia , Inflamação/fisiopatologia , Interleucina-6/metabolismo , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
14.
Materials (Basel) ; 17(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893806

RESUMO

Triply periodic minimal surface microarchitectures (TPMS) were developed by mathematicians and evolved in all kingdoms of living organisms. Renowned for their lightweight yet robust attributes, TPMS structures find application in diverse fields, such as the construction of satellites, aircrafts, and electric vehicles. Moreover, these microarchitectures, despite their intricate geometric patterns, demonstrate potential for application as bone substitutes, despite the inherent gothic style of natural bone microarchitecture. Here, we produced three TPMS microarchitectures, D-diamond, G-gyroid, and P-primitive, by 3D printing from hydroxyapatite. We explored their mechanical characterization and, further, implanted them to study their bone augmentation and osteoconduction potential. In terms of strength, the D-diamond and G-gyroid performed significantly better than the P-primitive. In a calvarial defect model and a calvarial bone augmentation model, where osteoconduction is determined as the extent of bony bridging of the defect and bone augmentation as the maximal vertical bone ingrowth, the G-gyroid performed significantly better than the P-primitive. No significant difference in performance was observed between the G-gyroid and D-diamond. Since, in real life, the treatment of bone deficiencies in patients comprises elements of defect bridging and bone augmentation, ceramic scaffolds with D-diamond and G-gyroid microarchitectures appear as the best choice for a TPMS-based scaffold in bone tissue engineering.

15.
BMC Prim Care ; 25(1): 124, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649812

RESUMO

BACKGROUND: The purpose of this study was to understand the healthcare provider (HCP) perspective on the extent of suboptimal insulin dosing in people with diabetes (PwD), as well as specific challenges and solutions to insulin management. METHODS: An online survey of general practitioners and specialists (N = 640) who treat PwD in Germany, Spain, the United Kingdom, and the United States was conducted. Responses regarding HCP background and their patients, HCP perceptions of suboptimal insulin use, and challenges associated with optimal insulin use were collected. Categorical summary statistics were presented. RESULTS: Overall, for type 1 diabetes (T1D) and type 2 diabetes (T2D), most physicians indicated < 30% of PwD missed or skipped a bolus insulin dose in the last 30 days (T1D: 83.0%; T2D: 74.1%). The top 3 reasons (other than skipping a meal) HCPs believed caused the PwD to miss or skip insulin doses included they "forgot," (bolus: 75.0%; basal: 67.5%) "were too busy/distracted," (bolus: 58.8%; basal: 48.3%), and "were out of their normal routine" (bolus: 57.8%; basal: 48.6%). HCPs reported similar reasons that they believed caused PwD to mistime insulin doses. Digital technology and improved HCP-PwD communication were potential solutions identified by HCPs to optimize insulin dosing in PwD. CONCLUSIONS: Other studies have shown that PwD frequently experience suboptimal insulin dosing. Conversely, results from this study showed that HCPs believe suboptimal insulin dosing among PwD is limited in frequency. While no direct comparisons were made in this study, this apparent discrepancy could lead to difficulties in HCPs giving PwD the best advice on optimal insulin management. Approaches such as improving the objectivity of dose measurements for both PwD and HCPs may improve associated communications and help reduce suboptimal insulin dosing, thus enhancing treatment outcomes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Insulina/administração & dosagem , Insulina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Estudos Transversais , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Padrões de Prática Médica/estatística & dados numéricos , Inquéritos e Questionários , Pessoal de Saúde , Atitude do Pessoal de Saúde
16.
TH Open ; 8(2): e243-e251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38938750

RESUMO

Background Recombinant von Willebrand factor (rVWF, vonicog alfa, Takeda Pharmaceuticals USA) is indicated in adults diagnosed with von Willebrand disease (VWD). In this study, the exposure-response (ER) relationship between VWF activity (VWF:RCo) or factor VIII activity (FVIII:C) and spontaneous bleeding events (BEs) was evaluated in adults with severe VWD receiving rVWF prophylaxis for up to 1 year. Methods This secondary analysis included 23 patients receiving rVWF prophylaxis in the open-label, phase 3 prophylaxis trial (NCT02973087). Population pharmacokinetic (PK) and PK/pharmacodynamic (PD) models were used to characterize VWF activity and endogenous FVIII:C, and PK/PD simulations were linked to spontaneous BEs to develop an ER model. Results None of the five patients with VWD types 1 or 2A/B experienced spontaneous BEs. Five of 18 patients with VWD type 3 experienced ≥1 spontaneous BEs. An ER relationship was observed whereby higher VWF:RCo levels were associated with a numerically lower spontaneous BE risk ( p < 0.10). This relationship was independent of patients' pretrial VWF treatment. A statistically significant ER relationship was observed after accounting for relevant data (average ± standard error exposure estimate for VWF:RCo over 24 hours prior to the spontaneous BE: -0.043 ± 0.021, p = 0.041). The model-generated hazard ratio for a 10 IU/dL increment in the average exposure of VWF:RCo 24 hours before a spontaneous BE was 0.651 (95% confidence interval: 0.431-0.982). Conclusions This ER analysis suggests a causal association between VWF:RCo and spontaneous BEs, with an increase of VWF:RCo exposure leading to a decrease in spontaneous BE risk.

17.
Int J Bioprint ; 9(1): 626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844242

RESUMO

63Additive manufacturing can be applied to produce personalized bone substitutes. At present, the major three-dimensional (3D) printing methodology relies on filament extrusion. In bioprinting, the extruded filament consists mainly of hydrogels, in which growth factors and cells are embedded. In this study, we used a lithography-based 3D printing methodology to mimic filament-based microarchitectures by varying the filament dimension and the distance between the filaments. In the first set of scaffolds, all filaments were aligned toward bone ingrowth direction. In a second set of scaffolds, which were derived from the identical microarchitecture but tilted by 90°, only 50% of the filaments were in line with the bone ingrowth direction. Testing of all tricalcium phosphate-based constructs for osteoconduction and bone regeneration was performed in a rabbit calvarial defect model. The results revealed that if all filaments are in line with the direction of bone ingrowth, filament size and distance (0.40-1.25 mm) had no significant influence on defect bridging. However, with 50% of filaments aligned, osteoconductivity declined significantly with an increase in filament dimension and distance. Therefore, for filament-based 3D- or bio-printed bone substitutes, the distance between the filaments should be 0.40 to 0.50 mm irrespective of the direction of bone ingrowth or up to 0.83 mm if perfectly aligned to it.

18.
Tissue Eng Part A ; 29(19-20): 507-517, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37212290

RESUMO

Triply periodic minimal surfaces (TPMSs) are found to be promising microarchitectures for bone substitutes owing to their low weight and superior mechanical characteristics. However, existing studies on their application are incomplete because they focus solely on biomechanical or in vitro aspects. Hardly any in vivo studies where different TPMS microarchitectures are compared have been reported. Therefore, we produced hydroxyapatite-based scaffolds with three types of TPMS microarchitectures, namely Diamond, Gyroid, and Primitive, and compared them with an established Lattice microarchitecture by mechanical testing, 3D-cell culture, and in vivo implantation. Common to all four microarchitectures was the minimal constriction of a sphere of 0.8 mm in diameter, which earlier was found superior in Lattice microarchitectures. Scanning by µCT revealed the precision and reproducibility of our printing method. The mechanical analysis showed significantly higher compression strength for Gyroid and Diamond samples compared with Primitive and Lattice. After in vitro culture with human bone marrow stromal cells in control or osteogenic medium, no differences between these microarchitectures were observed. However, from the TPMS microarchitectures, Diamond- and Gyroid-based scaffolds showed the highest bone ingrowth and bone-to-implant contact in vivo. Therefore, Diamond and Gyroid designs appear to be the most promising TPMS-type microarchitectures for scaffolds produced for bone tissue engineering and regenerative medicine. Impact Statement Extensive bone defects require the application of bone grafts. To match the existing requirements, scaffolds based on triply periodic minimal surface (TPMS)-based microarchitectures could be used as bone substitutes. This work is dedicated to the investigation of mechanical and osteoconductive properties of TPMS-based scaffolds to determine the influencing factors on differences in their behavior and choose the most promising design to be used in bone tissue engineering.


Assuntos
Substitutos Ósseos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais , Reprodutibilidade dos Testes , Porosidade , Diamante
19.
3D Print Addit Manuf ; 10(5): 905-916, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886403

RESUMO

Autologous bone remains the gold standard bone substitute in clinical practice. Therefore, the microarchitecture of newly developed synthetic bone substitutes, which reflects the spatial distribution of materials in the scaffold, aims to recapitulate the natural bone microarchitecture. However, the natural bone microarchitecture is optimized to obtain a mechanically stable, lightweight structure adapted to the biomechanical loading situation. In the context of synthetic bone substitutes, the application of a Triply Periodic Minimum Surface (TPMS) algorithm can yield stable lightweight microarchitectures that, despite their demanding architectural complexity, can be produced by additive manufacturing. In this study, we applied the TPMS derivative Adaptive Density Minimal Surfaces (ADMS) algorithm to produce scaffolds from hydroxyapatite (HA) using a lithography-based layer-by-layer methodology and compared them with an established highly osteoconductive lattice microarchitecture. We characterized them for compression strength, osteoconductivity, and bone regeneration. The in vivo results, based on a rabbit calvaria defect model, showed that bony ingrowth into ADMS constructs as a measure of osteoconduction depended on minimal constriction as it limited the maximum apparent pore diameter in these scaffolds to 1.53 mm. Osteoconduction decreased significantly at a diameter of 1.76 mm. The most suitable ADMS microarchitecture was as osteoconductive as a highly osteoconductive orthogonal lattice microarchitecture in noncritical- and critical-size calvarial defects. However, the compression strength and microarchitectural integrity in vivo were significantly higher for scaffolds with their microarchitecture based on the ADMS algorithm when compared with high-connectivity lattice microarchitectures. Therefore, bone substitutes with high osteoconductivity can be designed with the advantages of the ADMS-based microarchitectures. As TPMS and ADMS microarchitectures are true lightweight structures optimized for high mechanical stability with a minimal amount of material, such microarchitectures appear most suitable for bone substitutes used in clinical settings to treat bone defects in weight-bearing and non-weight-bearing sites.

20.
Eur J Clin Pharmacol ; 68(5): 589-97, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22143911

RESUMO

PURPOSE: To determine sirolimus steady-state pharmacokinetics, and to assess the relationship between time-normalized trough sirolimus concentration (C(min,TN)) and evidence of efficacy (rejection and death) and adverse reactions (stomatitis and pneumonia) in liver allograft patients. METHODS: Dense sampling of sirolimus was performed over a single daily-dosing interval in 11 hepatic allograft recipients on day 28 and at 3 months after start of treatment. Serial trough concentration sampling was performed in 380 hepatic allograft recipients on days 1, 7, 14, 28, 42, 60, 90, 180, 270 and 360 after start of treatment. Occurrence of stomatitis, pneumonia, rejection, and death were collected for 360 days after start of treatment. Noncompartmental pharmacokinetic parameters were analyzed in the 11 densely sampled patients; C(min,TN) was determined in the 380 patients. RESULTS: Mean maximum concentration (C(max)), time to C(max) (t(max)), area under the curve for the given dose interval (AUC(tau)), and whole blood oral clearance at 3 months were 20.8 ± 7.6 ng/mL, 3 ± 1 h, 338 ± 144 ng·h/mL, and 10.0 ± 5.6 L/hr, respectively. In the 11 densely sampled patients, linear regression showed that C(min,TN) was highly predictive of AUC(tau) (r² = 0.77, P < 0.0001) at each analysis time point. Logistic regression showed a relationship between C(min,TN) in the 380 patients and pneumonia occurrence, but not between C(min,TN) and stomatitis, rejection, or death. CONCLUSIONS: In this study, the pharmacokinetic profile of sirolimus in hepatic allograft patients was consistent with that of renal transplantation recipients. With the exception of pneumonia, no correlation was observed between C(min,TN) and the occurrence of adverse events of interest.


Assuntos
Rejeição de Enxerto/prevenção & controle , Imunossupressores/farmacocinética , Transplante de Fígado/imunologia , Sirolimo/farmacocinética , Adulto , Feminino , Rejeição de Enxerto/epidemiologia , Rejeição de Enxerto/imunologia , Insuficiência Hepática/metabolismo , Insuficiência Hepática/fisiopatologia , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/sangue , Imunossupressores/uso terapêutico , Incidência , Fígado/metabolismo , Fígado/fisiopatologia , Transplante de Fígado/efeitos adversos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Pneumonia/epidemiologia , Pneumonia/imunologia , Pneumonia/prevenção & controle , Risco , Índice de Gravidade de Doença , Sirolimo/efeitos adversos , Sirolimo/sangue , Sirolimo/uso terapêutico , Estomatite/epidemiologia , Estomatite/imunologia , Estomatite/prevenção & controle , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA