Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1313: 15-22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34661889

RESUMO

The 2013-2016 Ebola virus epidemic in West Africa, which also spread to the USA, UK and Europe, was the largest reported outbreak till date (World Health Organization. 2016. https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1 ). The recent Ebola outbreak in the Democratic Republic of the Congo has raised immense global concern on this severe and often fatal infection. Although sporadic, the severity and lethality of Ebola virus disease outbreaks has led to extensive research worldwide on this virus. Vaccine (World Health Organization. 2016. https://www.who.int/en/news-room/detail/23-12-2016-final-trial-results-confirm-ebola-vaccine-provides-high-protection-against-disease ; Henao-Restrepo et al. Lancet 389:505-518, 2017) and drug (Hayden. Nature, 557, 475-476, 2018; Dyall et al. J Infect Dis 218(suppl_5), S672-S678, 2018) development efforts against Ebola virus are research hotspots, and a few approved therapeutics are currently available (Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/clinicians/vaccine/index.html; Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/treatment/index.html). Ebola virus has evolved several mechanisms of host immune evasion, which facilitate its replication and pathogenesis. This chapter describes the Ebola virus morphology, genome, entry, replication, pathogenesis and viral proteins involved in host immune evasion. Further understanding of the underlying molecular mechanisms of immune evasion may facilitate development of additional novel and sustainable strategies against this deadly virus.


Assuntos
Ebolavirus , Epidemias , Doença pelo Vírus Ebola , Surtos de Doenças , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Evasão da Resposta Imune
2.
Nature ; 463(7282): 813-7, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20027183

RESUMO

Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host-pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-beta. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIbeta (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.


Assuntos
Fatores Biológicos/genética , Fatores Biológicos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Vírus da Influenza A/crescimento & desenvolvimento , Influenza Humana/genética , Influenza Humana/virologia , Replicação Viral/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Biblioteca Gênica , Genoma Humano/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A/classificação , Interferência de RNA , Células Vero , Internalização do Vírus
3.
Virol J ; 8: 11, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21223600

RESUMO

The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin) Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP), it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.


Assuntos
Ebolavirus/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas , Proteínas do Envelope Viral/metabolismo , Ebolavirus/genética , Regulação Viral da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Membrana Nuclear/metabolismo , Nucleoproteínas/genética , Transporte Proteico , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/metabolismo
4.
Oncogene ; 23(13): 2367-78, 2004 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-14981543

RESUMO

Azurin, a copper-containing redox protein released by the pathogenic bacterium Pseudomonas aeruginosa, is highly cytotoxic to the human breast cancer cell line MCF-7, but is less cytotoxic toward p53-negative (MDA-MB-157) or nonfunctional p53 cell lines like MDD2 and MDA-MB-231. The purpose of this study was to investigate the underlying mechanism of the action of bacterial cupredoxin azurin in the regression of breast cancer and its potential chemotherapeutic efficacy. Azurin enters into the cytosol of MCF-7 cells and travels to the nucleus, enhancing the intracellular levels of p53 and Bax, thereby triggering the release of mitochondrial cytochrome c into the cytosol. This process activates the caspase cascade (including caspase-9 and caspase-7), thereby initiating the apoptotic process. Our results indicate that azurin-induced cell death stimuli are amplified in the presence of p53. In vivo injection of azurin in immunodeficient mice harboring xenografted human breast cancer cells in the mammary fat pad leads to statistically significant regression (85%, P = 0.0179, Kruskal-Wallis Test) of the tumor. In conclusion, azurin blocks breast cancer cell proliferation and induces apoptosis through the mitochondrial pathway both in vitro and in vivo, thereby suggesting a potential chemotherapeutic application of this bacterial cupredoxin for the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azurina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspases/metabolismo , Feminino , Humanos , Proteína Supressora de Tumor p53/metabolismo
5.
Adv Virol ; 2013: 487585, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23365575

RESUMO

Although filoviral infections are still occurring in different parts of the world, there are no effective preventive or treatment strategies currently available against them. Not only do filoviruses cause a deadly infection, but they also have the potential of being used as biological weapons. This makes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent the occurrence of these infections. Entry is the foremost step in the filoviral replication cycle and different studies have reported the involvement of a myriad of cellular factors including plasma membrane components, cytoskeletal proteins, endosomal components, and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3, Axl, and Mer have also been implicated as putative entry factors. Additionally, filoviruses are suggested to bind to a common receptor and recent studies have proposed T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) as potential receptor candidates. This paper summarizes the existing literature on filoviral entry with a special focus on cellular factors involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could be very useful in designing novel antiviral therapeutics.

6.
Cell Host Microbe ; 14(2): 136-47, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23954153

RESUMO

Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets.


Assuntos
Células Dendríticas/imunologia , Flavivirus/imunologia , Tolerância Imunológica , Imunidade Inata , Retroviridae/imunologia , Animais , Linhagem Celular , Humanos , Interferon Tipo I/biossíntese , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
7.
Viruses ; 4(12): 3647-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23342373

RESUMO

Detailed knowledge of the host-virus interactions that accompany filovirus entry into cells is expected to identify determinants of viral virulence and host range, and to yield targets for the development of antiviral therapeutics. While it is generally agreed that filovirus entry into the host cytoplasm requires viral internalization into acidic endosomal compartments and proteolytic cleavage of the envelope glycoprotein by endo/lysosomal cysteine proteases, our understanding of the specific endocytic pathways co-opted by filoviruses remains limited. This review addresses the current knowledge on cellular endocytic pathways implicated in filovirus entry, highlights the consensus as well as controversies, and discusses important remaining questions.


Assuntos
Endocitose , Filoviridae/fisiologia , Interações Hospedeiro-Patógeno , Internalização do Vírus , Animais , Filoviridae/patogenicidade , Especificidade de Hospedeiro , Humanos , Fatores de Virulência/metabolismo
8.
Virology ; 419(1): 1-9, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21855102

RESUMO

Clathrin-mediated endocytosis was previously implicated as one of the cellular pathways involved in filoviral glycoprotein mediated viral entry into target cells. Here we have further dissected the requirements for different components of this pathway in Ebola versus Marburg virus glycoprotein (GP) mediated viral infection. Although a number of these components were involved in both cases; Ebola GP-dependent viral entry specifically required the cargo recognition proteins Eps15 and DAB2 as well as the clathrin adaptor protein AP-2. In contrast, Marburg GP-mediated infection was independent of these three proteins and instead required beta-arrestin 1 (ARRB1). These findings have revealed an unexpected difference between the clathrin pathway requirements for Ebola GP versus Marburg GP pseudovirion infection. Anthrax toxin also uses a clathrin-, and ARRB1-dependent pathway for cellular entry, indicating that the mechanism used by Marburg GP pseudovirions may be more generally important for pathogen entry.


Assuntos
Clatrina/metabolismo , Ebolavirus/fisiologia , Endocitose , Interações Hospedeiro-Patógeno , Marburgvirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Arrestinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteínas Supressoras de Tumor , Virossomos , beta-Arrestina 1 , beta-Arrestinas
9.
Virology ; 401(1): 18-28, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20202662

RESUMO

Ebola virus (EBOV) infects several cell types and while viral entry is known to be pH-dependent, the exact entry pathway(s) remains unknown. To gain insights into EBOV entry, the role of several inhibitors of clathrin-mediated endocytosis in blocking infection mediated by HIV pseudotyped with the EBOV envelope glycoprotein (EbGP) was examined. Wild type HIV and envelope-minus HIV pseudotyped with Vesicular Stomatitis Virus glycoprotein (VSVg) were used as controls to assess cell viability after inhibiting clathrin pathway. Inhibition of clathrin pathway using dominant-negative Eps15, siRNA-mediated knockdown of clathrin heavy chain, chlorpromazine and sucrose blocked EbGP pseudotyped HIV infection. Also, both chlorpromazine and Bafilomycin A1 inhibited entry of infectious EBOV. Sensitivity of EbGP pseudotyped HIV as well as infectious EBOV to inhibitors of clathrin suggests that EBOV uses clathrin-mediated endocytosis as an entry pathway. Furthermore, since chlorpromazine inhibits EBOV infection, novel therapeutic modalities could be designed based on this lead compound.


Assuntos
Clatrina/metabolismo , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Internalização do Vírus , Animais , Linhagem Celular , Clorpromazina/farmacologia , Humanos , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA