Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pediatr Nephrol ; 37(10): 2255-2265, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35220505

RESUMO

Chronic kidney disease (CKD) can progress to kidney failure and require dialysis or transplantation, while early diagnosis can alter the course of disease and lead to better outcomes in both pediatric and adult patients. Significant CKD comorbidities include the manifestation of cardiovascular disease, heart failure, coronary disease, and hypertension. The pathogenesis of chronic kidney diseases can present as subtle and especially difficult to distinguish between different glomerular pathologies. Early detection of adult and pediatric CKD and detailed mechanistic understanding of the kidney damage can be helpful in delaying or curtailing disease progression via precise intervention toward diagnosis and prognosis. Clinically, serum creatinine and albumin levels can be indicative of CKD, but often are a lagging indicator only significantly affected once kidney function has severely diminished. The evolution of proteomics and mass spectrometry technologies has begun to provide a powerful research tool in defining these mechanisms and identifying novel biomarkers of CKD. Many of the same challenges and advances in proteomics apply to adult and pediatric patient populations. Additionally, proteomic analysis of adult CKD patients can be transferred directly toward advancing our knowledge of pediatric CKD as well. In this review, we highlight applications of proteomics that have yielded such biomarkers as PLA2R, SEMA3B, and other markers of membranous nephropathy as well as KIM-1, MCP-1, and NGAL in lupus nephritis among other potential diagnostic and prognostic markers. The potential for improving the clinical toolkit toward better treatment of pediatric kidney diseases is significantly aided by current and future development of proteomic applications.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Adulto , Biomarcadores , Criança , Taxa de Filtração Glomerular , Humanos , Nefropatias/diagnóstico , Proteômica , Diálise Renal
2.
J Am Soc Nephrol ; 27(6): 1609-16, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26487561

RESUMO

Evidence suggests that autophagy promotes the development of cellular senescence. Because cellular senescence contributes to renal aging and promotes the progression from AKI to CKD, we investigated the potential effect of tubular autophagy on senescence induction. Compared with kidneys from control mice, kidneys from mice with conditional deletion of autophagy-related 5 (Atg5) for selective ablation of autophagy in proximal tubular S3 segments (Atg5(Δ) (flox/) (Δ) (flox)) presented with significantly less tubular senescence, reduced interstitial fibrosis, and superior renal function 30 days after ischemia/reperfusion injury. To correlate this long-term outcome with differences in the early injury process, kidneys were analyzed 2 hours and 3 days after reperfusion. Notably, compared with kidneys of control mice, Atg5(Δ) (flox/) (Δ) (flox) kidneys showed more cell death in outer medullary S3 segments at 2 hours but less tubular damage and inflammation at day 3. These data suggest that the lack of autophagy prevents early survival mechanisms in severely damaged tubular cells. However, if such compromised cells persist, then they may lead to maladaptive repair and proinflammatory changes, thereby facilitating the development of a senescent phenotype and CKD.


Assuntos
Autofagia , Senescência Celular , Túbulos Renais Proximais/citologia , Animais , Masculino , Camundongos
3.
J Am Soc Nephrol ; 26(11): 2659-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25788525

RESUMO

Zinc-α2-glycoprotein (AZGP1) is a secreted protein synthesized by epithelial cells and adipocytes that has roles in lipid metabolism, cell cycling, and cancer progression. Our previous findings in AKI indicated a new role for AZGP1 in the regulation of fibrosis, which is a unifying feature of CKD. Using two models of chronic kidney injury, we now show that mice with genetic AZGP1 deletion develop significantly more kidney fibrosis. This destructive phenotype was rescued by injection of recombinant AZGP1. Exposure of AZGP1-deficient mice to cardiac stress by thoracic aortic constriction revealed that antifibrotic effects were not restricted to the kidney but were cardioprotective. In vitro, recombinant AZGP1 inhibited kidney epithelial dedifferentiation and antagonized fibroblast activation by negatively regulating TGF-ß signaling. Patient sera with high levels of AZGP1 similarly attenuated TGF-ß signaling in fibroblasts. Taken together, these findings indicate a novel role for AZGP1 as a negative regulator of fibrosis progression, suggesting that recombinant AZGP1 may have translational effect for treating fibrotic disease.


Assuntos
Falência Renal Crônica/genética , Rim/metabolismo , Miocárdio/metabolismo , Proteínas de Plasma Seminal/metabolismo , Adipocinas , Animais , Aorta/patologia , Proteínas de Transporte/metabolismo , Diferenciação Celular , Epitélio/patologia , Fibroblastos/metabolismo , Fibrose/patologia , Deleção de Genes , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Rim/patologia , Nefropatias/metabolismo , Falência Renal Crônica/metabolismo , Masculino , Camundongos , Miocárdio/patologia , Fosforilação , Biossíntese de Proteínas , Ratos , Proteínas Recombinantes/química , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/patologia , Glicoproteína Zn-alfa-2
4.
iScience ; 27(1): 108631, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188512

RESUMO

Idiopathic nephrotic syndrome (NS) is a common glomerular disease. Although glucocorticoids (GC) are the primary treatment, the PPARγ agonist pioglitazone (Pio) also reduces proteinuria in patients with NS and directly protects podocytes from injury. Because both drugs reduce proteinuria, we hypothesized these effects result from overlapping transcriptional patterns. Systems biology approaches compared glomerular transcriptomes from rats with PAN-induced NS treated with GC vs. Pio and identified 29 commonly regulated genes-of-interest, primarily involved in extracellular matrix (ECM) remodeling. Correlation with clinical idiopathic NS patient datasets confirmed glomerular ECM dysregulation as a potential mechanism of injury. Cellular deconvolution in silico revealed GC- and Pio-induced amelioration of altered genes primarily within podocytes and mesangial cells. While validation studies are indicated, these analyses identified molecular pathways involved in the early stages of NS (prior to scarring), suggesting that targeting glomerular ECM dysregulation may enable a future non-immunosuppressive approach for proteinuria reduction in idiopathic NS.

5.
Kidney Int Rep ; 8(6): 1239-1254, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284673

RESUMO

Introduction: Nephrotic syndrome (NS) occurs commonly in children with glomerular disease and glucocorticoids (GCs) are the mainstay treatment. Steroid resistant NS (SRNS) develops in 15% to 20% of children, increasing the risk of chronic kidney disease compared to steroid sensitive NS (SSNS). NS pathogenesis is unclear in most children, and no biomarkers exist that predict the development of pediatric SRNS. Methods: We studied a unique patient cohort with plasma specimens collected before GC treatment, yielding a disease-only sample not confounded by steroid-induced gene expression changes (SSNS n = 8; SRNS n = 7). A novel "patient-specific" bioinformatic approach merged paired pretreatment and posttreatment proteomic and metabolomic data and identified candidate SRNS biomarkers and altered molecular pathways in SRNS versus SSNS. Results: Joint pathway analyses revealed perturbations in nicotinate or nicotinamide and butanoate metabolic pathways in patients with SRNS. Patients with SSNS had perturbations of lysine degradation, mucin type O-glycan biosynthesis, and glycolysis or gluconeogenesis pathways. Molecular analyses revealed frequent alteration of molecules within these pathways that had not been observed by separate proteomic and metabolomic studies. We observed upregulation of NAMPT, NMNAT1, and SETMAR in patients with SRNS, in contrast to upregulation of ALDH1B1, ACAT1, AASS, ENPP1, and pyruvate in patients with SSNS. Pyruvate regulation was the change seen in our previous analysis; all other targets were novel. Immunoblotting confirmed increased NAMPT expression in SRNS and increased ALDH1B1 and ACAT1 expression in SSNS, following GC treatment. Conclusion: These studies confirmed that a novel "patient-specific" bioinformatic approach can integrate disparate omics datasets and identify candidate SRNS biomarkers not observed by separate proteomic or metabolomic analysis.

6.
Sci Transl Med ; 12(552)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669422

RESUMO

Nuclear radiation and radioactive fallouts resulting from a nuclear weapon detonation or reactor accidents could result in injuries affecting multiple sensitive organs, defined as acute radiation syndrome (ARS). Rapid and early estimation of injuries to sensitive organs using markers of radiation response is critical for identifying individuals who could potentially exhibit ARS; however, there are currently no biodosimetry assays approved for human use. We developed a sensitive microRNA (miRNA)-based blood test for radiation dose reconstruction with ±0.5 Gy resolution at critical dose range. Radiation dose-dependent changes in miR-150-5p in blood were internally normalized by a miRNA, miR-23a-3p, that was nonresponsive to radiation. miR-23a-3p was not highly expressed in blood cells but was abundant in circulation and was released primarily from the lung. Our assay showed the capability for dose estimation within hours to 1 week after exposure using a drop of blood from mice. We tested this biodosimetry assay for estimation of absorbed ionizing radiation dose in mice of varying ages and after exposure to both improvised nuclear device (IND)-spectrum neutrons and gamma rays. Leukemia specimens from patients exposed to fractionated radiation showed depletion of miR-150-5p in blood. We bridged the exposure of these patients to fractionated radiation by comparing responses after fractionated versus single acute exposure in mice. Although validation in nonhuman primates is needed, this proof-of-concept study suggests the potential utility of this assay in radiation disaster management and clinical applications.


Assuntos
MicroRNAs , Animais , Bioensaio , Biomarcadores , Relação Dose-Resposta à Radiação , Humanos , Camundongos , MicroRNAs/genética , Doses de Radiação , Radiação Ionizante
7.
PLoS One ; 14(11): e0225505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31751415

RESUMO

The NanoString nCounter System has been widely used in basic science and translational science research for the past decade. The System consists of two instruments: the PrepStation and the Digital Analyzer, and both have been continuously improved with evolving technologies. A great amount of research data have been generated at multiple research laboratories with the employment of different generations of the System. With the need of integrating multiple datasets, researchers are interested to know whether signals are comparable between different generations of the System. Toward this end, we designed a profiling study to compare performance of two generations of the NanoString nCounter System using a common set of biological samples. Using graphical tools and statistical models, we found that two different generations of NanoString nCounter System produced equivalent signals and signal deviations are in the range of random background noises for the medium-high expression levels.


Assuntos
Perfilação da Expressão Gênica/instrumentação , MicroRNAs/genética , Células Cultivadas , Humanos , Modelos Estatísticos , Nanoestruturas , Sensibilidade e Especificidade
8.
Radiat Res ; 188(6): 626-635, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28977780

RESUMO

Radiation nephropathy is one of the common late effects in cancer survivors who received radiotherapy as well as in victims of radiation accidents. The clinical manifestations of radiation nephropathy occur months after exposure. To date, there are no known early biomarkers to predict the future development of radiation nephropathy. This study focuses on the development of urinary biomarkers providing readout of acute responses in renal tubular epithelial cells. An amplification-free hybridization-based nCounter assay was used to detect changes in mouse urinary miRNAs after irradiation. After a single LD50 of total-body irradiation (TBI) or clinically relevant fractionated doses (2 Gy twice daily for 3 days), changes in urinary levels of microRNAs followed either an early pattern, peaking at 6-8 h postirradiation and gradually declining, or later pattern, peaking from 24 h to 7 days. Of 600 miRNAs compared, 12 urinary miRNAs showed the acute response and seven showed the late response, common to both irradiation protocols. miR-1224 and miR-21 were of particular interest, since they were the most robust acute and late responders, respectively. The early responding miR-1224 also exhibited good dose response after 2, 4, 6 and 8 Gy TBI, indicating its potential use as a biomarker for radiation exposure. In situ hybridization of irradiated mouse kidney sections and cultured mouse primary renal tubular cells confirmed the tubular origin of miR-1224. A significant upregulation in hsa-miR-1224-3p expression was also observed in human proximal renal tubular cells after irradiation. Consistent with mouse urine data, a similar expression pattern of hsa-miR-1224-3p and hsa-miR-21 were observed in urine samples collected from human leukemia patients preconditioned with TBI. This proof-of-concept study shows the potential translational utility of urinary miRNA biomarkers for radiation damage in renal tubules with possible prediction of late effects.


Assuntos
Biomarcadores/urina , Túbulos Renais/efeitos da radiação , MicroRNAs/urina , Lesões Experimentais por Radiação/urina , Lesões por Radiação/urina , Irradiação Corporal Total , Animais , Relação Dose-Resposta à Radiação , Células Epiteliais/efeitos da radiação , Exossomos/química , Exossomos/efeitos da radiação , Humanos , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/efeitos da radiação , Dose Letal Mediana , Leucemia Mieloide Aguda/radioterapia , Leucemia Mieloide Aguda/urina , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/urina , RNA Neoplásico/urina , Lesões por Radiação/etiologia , Fatores de Tempo , Condicionamento Pré-Transplante
9.
J Nephropathol ; 6(2): 90-96, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28491859

RESUMO

BACKGROUND: Mammalian target of rapamycin (mTOR) inhibitors are increasingly used as immunosuppressive agents in kidney transplantation. In the experimental setting it has been shown that mTOR inhibitors promote autophagy, but the concept that this might also occur in transplant patients has not been addressed. OBJECTIVES: This study was designed to investigate the association between mTOR inhibition and autophagy in renal transplants under routine clinical conditions. MATERIALS AND METHODS: Protocol transplant biopsies of patients receiving sirolimus were compared to biopsies of patients treated without mTOR inhibitor. Electron microscopy was used for quantitative stereological analysis of autophagosomal volume fractions. Ultrastructural analysis was focused on podocytes to avoid cell type bias. Autophagy-related gene products were profiled by QPCR from laser assisted microdissected glomeruli and by immunohistochemistry for semiquantitative evaluation. RESULTS: By electron microscopy, we observed a significant > 50% increase in podocytic autophagosomal volume fractions in patients treated with sirolimus. Evaluation of biopsy material from the same patients using transcriptional profiling of laser capture microdissected glomeruli revealed no differences in autophagy-related gene expressions. Immunohistochemical evaluation of autophagic degradation product p62 was also unaltered whereas a significant increase was observed in podocytic LC3 positivity in biopsies of sirolimus treated patients. CONCLUSIONS: These results indicate an association of sirolimus treatment and autophagosome formation in transplant patients. However, they might reflect autophagosomal buildup rather than increased autophagic flux. Further research is needed to investigate the potential functional consequences in short- and long-term outcome of patients treated with mTOR inhibitors.

10.
Cell Cycle ; 15(21): 2973-2979, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27715411

RESUMO

Autophagy and senescence are 2 distinct pathways that are importantly involved in acute kidney injury and renal repair. Recent data indicate that the 2 processes might be interrelated. To investigate the potential link between autophagy and senescence in the kidney we isolated primary tubular epithelial cells (PTEC) from wild-type mice and monitored the occurrence of cellular senescence during autophagy activation and inhibition. We found that the process of cell isolation and transfer into culture was associated with a strong basal autophagic activation in PTEC. Specific inhibition of autophagy by silencing autophagy-related 5 (Atg5) counteracted the occurrence of senescence hallmarks under baseline conditions. Reduced senescent features were also observed in Atg5 silenced PTEC after γ-irradiation and during H-Ras induced oncogenic senescence, but the response was less uniform in these stress models. Senescence inhibition was paralleled by better preservation of a mature epithelial phenotype in PTEC. Interestingly, treatment with rapamycin, which acts as an activator of autophagy, also counteracted the occurrence of senescence features in PTEC. While we interpret the anti-senescent effect of rapamycin as an autophagy-independent effect of mTOR-inhibition, the more specific approach of Atg5 silencing indicates that overactivated autophagy can have pro-senescent effects in PTEC. These results highlight the complex interaction between cell culture dependent stress mechanisms, autophagy and senescence.


Assuntos
Autofagia , Senescência Celular , Células Epiteliais/citologia , Túbulos Renais/citologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Camundongos Endogâmicos C57BL , Fenótipo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA