Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell Mol Life Sci ; 77(2): 253-265, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31468060

RESUMO

Dysregulation of angiogenesis is a phenomenon observed in several disorders such as diabetic foot, critical limb ischemia and myocardial infarction. Mesenchymal stromal cells (MSCs) possess angiogenic potential and have recently emerged as a powerful tool for cell therapy to promote angiogenesis. Although bone marrow-derived MSCs are the primary cell of choice, obtaining them has become a challenge. The placenta has become a popular alternative as it is a highly vascular organ, easily available and ethically more favorable with a rich supply of MSCs. Comparatively, placenta-derived MSCs (PMSCs) are clinically promising due to their proliferative, migratory, clonogenic and immunomodulatory properties. PMSCs release a plethora of cytokines and chemokines key to angiogenic signaling and facilitate the possibility of delivering PMSC-derived exosomes as a targeted therapy to promote angiogenesis. However, there still remains the challenge of heterogeneity in the isolated populations, questions on the maternal or fetal origin of these cells and the diversity in previously reported isolation and culture conditions. Nonetheless, the growing rate of clinical trials using PMSCs clearly indicates a shift in favor of PMSCs. The overall aim of the review is to highlight the importance of this rather poorly understood cell type and emphasize the need for further investigations into their angiogenic potential as an alternative source for therapeutic angiogenesis.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica/fisiologia , Placenta/fisiologia , Animais , Exossomos/fisiologia , Feminino , Humanos , Gravidez
2.
Int J Obes (Lond) ; 43(10): 2107-2118, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31462691

RESUMO

OBJECTIVE: Obesity induced metabolic dysregulation results in cluster of chronic conditions mainly hyperglycemia, hyperinsulinemia, dyslipidemia, diabetes, cardiovascular complications and insulin resistance. To investigate the effect of i.m. injection of human adipose tissue derived mesenchymal stem cells and its secretome in correcting obesity induced metabolic dysregulation in high fat diet fed obese model of mice and understand its mechanism of action. SUBJECTS: We injected human adipose tissue derived mesenchymal stem cells (ADMSCs) suspension (CS), conditioned medium (CM) and the cell lysate (CL) intramuscularly in high fat diet (HFD)-induced C57BL/6 mice. Metformin was used as a positive control. ADMSCs were traced in vivo for its bio distribution after injection at different time points. RESULTS: ADMSCs-treated mice exhibited remarkable decrease in insulin resistance as quantified by HOMA-IR and triglyceride glucose index with concomitant decrease in oxidized LDL and IL6 as compared with the untreated control. CS injection showed improvement in glucose tolerance and reduction in fatty infiltration in the liver, macrophage infiltration in adipose and hypertrophy of the islets resulting from HFD. Upregulation of miRNA-206, MyoD and increase in protein content of the skeletal muscle in CS-treated mice indicates plausible mechanism of action of ADMSCs treatment in ameliorating IR in HFD mice. CONCLUSION: Of all the three treatments, CS was found to be the best. ADMSCs were found to have migrated to different organs in order to bring about the correction in dysregulated metabolism induced by obesity. Our results open up a novel treatment modality for possible therapeutic usage in human subjects by employing autologous or allogeneic ADMSCs for the better management of obesity induced metabolic dysregulation.


Assuntos
Tecido Adiposo/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Obesidade/metabolismo , Obesidade/terapia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Doenças Metabólicas/patologia , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia
3.
Pharmacol Res ; 132: 90-98, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29665425

RESUMO

Enhancement of angiogenesis is solicited in wound repair and regeneration. Mesenchymal stromal cells derived from the placenta (P-MSCs) have an inherent angiogenic potential. Polyunsaturated fatty acids (PUFAs) in turn, specifically the omega-3 (N-3) are essential for growth and development. They are also recommended as dietary supplements during pregnancy. We therefore hypothesized that addition of N-3 PUFAs in P-MSC culture media may enhance their angiogenic potential. Hence, we treated P-MSCs with omega-3 (N-3) fatty acids -Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) at different concentrations and tested their angiogenic potential. We saw an upregulation of both bFGF and VEGFA. We also found enhanced in vitro tube formation ability of P-MSCs treated with DHA: EPA. We then looked at the influence of the conditioned medium (CM) collected from P-MSCs exposed to DHA: EPA on the key effector cells -HUVECs (Human Umbilical Vein derived endothelial cells and their functionality was further confirmed on chick yolk sac membrane. We found that the CM of P-MSCs exposed to DHA: EPA could enhance angiogenesis in both cases. These result were finally validated in an in vivo matrigel plug assay which revealed enhanced migration and vessel formation in CM treated with DHA: EPA. Our data thus reveals for the first time that supplementation with lower concentration of PUFA enhances the angiogenic potential of P-MSCs making them suitable for chronic wound healing applications.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Células Cultivadas , Embrião de Galinha , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos BALB C , Placenta/citologia , Gravidez , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/fisiologia
4.
Cell Biol Int ; 42(11): 1474-1483, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30136736

RESUMO

Angiogenesis, the process of new blood vessel formation from pre-existing vessels, is essential for growth and development. Development of drugs that can accelerate or decelerate angiogenesis in the context of various diseases requires appropriate preclinical screening. As angiogenesis involves complex cellular and molecular processes, in vivo studies are superior to in vitro investigations. Conventional in vitro, in vivo, and ex ovo models of angiogenesis are time consuming and tedious, and require sophisticated infrastructure for embryo culture. In the present study, we established an in ovo chick embryo yolk sac membrane (YSM) assay for angiogenesis and tested the angiogenic potential of arginine, conditioned medium (CM) from human adipose tissue and placenta-derived mesenchymal stem cells (ADMSCs-CM and PDMSCs-CM), avastin and vitamin C. The obtained results were confirmed with the routinely employed chick embryo Chorioallantoic Membrane (CAM) assay. Both assays revealed the pro-angiogenic nature of arginine, ADMSCs-CM, and PDMSCs-CM, and the anti-angiogenic effect of avastin and vitamin C. This novel in ovo YSM model is simple, reproducible, and highly economic in terms of the time frame and cost incurred. The proposed model is thus a suitable substitute to the CAM model for pilot screening of potential angiogenic and anti-angiogenic agents.


Assuntos
Inibidores da Angiogênese/farmacologia , Bioensaio/métodos , Membrana Corioalantoide/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Saco Vitelino/metabolismo , Animais , Arginina/farmacologia , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Modelos Biológicos , Projetos Piloto , Reprodutibilidade dos Testes , Saco Vitelino/efeitos dos fármacos
5.
Cell Biol Int ; 42(12): 1602-1610, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30353965

RESUMO

Dental pulp stem cells have emerged as a preferred source of mesenchymal stem cells, because of its easy availability and high stem cell content. Dental pulp is a specific fibrous tissue that contains heterogeneous populations of odontoblasts, fibroblasts, pericytes, progenitors, stem cells, leukocytes and neuronal cells. In this study, we propose sustained explant culture as a simple, economical and efficient process to isolate dental pulp stem cells from human Dental pulp Tissue. Historically explant cultures were used to get fibroblast cells from embryonic chick heart using plasma clot cultures. The subculture was performed by lifting mother explant (original explant) and grafting it in a new plasma clot. We modified this age old technique to suit the modern times. Here we demonstrate for the first time that the mother explant (E0) of human dental pulp tissue could be sub-cultured consecutively seven times (E7) without displacement. This technique is highly reproducible and permits growth and proliferation of dental pulp stem cells yielding an enriched homogeneous mesenchymal stem cells population in the first passage itself as revealed by surface marker expression. These dental pulp stem cells exhibit differentiation into adipogenic, chondrogenic and osteogenic lineage revealing their mesenchymal stem cell nature. We propose that dental pulp stem cells isolated by sustained explant culture are phenotypically and functionally comparable to those obtained by enzymatic method. It is a simple, inexpensive and gentle method, which may be preferred over the conventional techniques for obtaining stem cells from other tissue sources as well especially in cases of limited starting material.


Assuntos
Técnicas de Cultura de Células/métodos , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Adipogenia , Adolescente , Adulto , Biomarcadores/metabolismo , Linhagem da Célula , Membrana Celular/metabolismo , Proliferação de Células , Separação Celular , Forma Celular , Células Cultivadas , Condrogênese , Ensaio de Unidades Formadoras de Colônias , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Fatores de Tempo , Adulto Jovem
6.
J Cell Biochem ; 118(8): 2037-2043, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791278

RESUMO

The link between insulin resistance (IR) and type 2 diabetes has been recognized for a long time. Type 2 diabetes is often associated with basal hyperinsulinemia, reduced sensitivity to insulin, and disturbances in insulin release. There are evidences showing the reversal of IR by mesenchymal stem cells. However, the effect of conditioned media from adipose derived mesenchymal stem cells (ADSCs-CM) in reversal of IR has not been established. We established an insulin resistant model of 3T3L1 and C2C12 cells and treated with ADSCs-CM. 2-NBDG (2-[N-[7-Nitrobenz-2-oxa-1,3-diazol-4-yl]Amino]-2-Deoxyglucose) uptake was performed to assess improvement in glucose uptake. Genes involved in glucose transport and in inflammation were also analysed. Western blot for glucose transporter-4 and Akt was performed to evaluate translocation of Glut4 and insulin signaling respectively. We found that the ADSCs-CM treated cells restored insulin, stimulated glucose uptake as compared to the untreated control indicating the insulin sensitizing effect of the CM. The treated cells also showed inhibition adipogenesis in 3T3L1 cells and significant reduction of intramuscular triglyceride accumulation in C2C12 cells. Gene expressions studies revealed the drastic upregulation of GLUT4 gene and significant reduction in IL6 and PAI1 gene in both 3T3L1 and C2C12 cells, indicating possible mechanism of glucose uptake with concomitant decrease in inflammation. Enhancement of GLUT4 and phospho Akt protein expression seems to be responsible for the increment in glucose uptake and enhanced insulin signaling, respectively. Our study revealed for the first time that ADSCs-CM acts as an alternative insulin sensitizer providing stem cell solution to IR. J. Cell. Biochem. 118: 2037-2043,2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Adipócitos/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Resistência à Insulina , Insulina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Mioblastos/efeitos dos fármacos , Células 3T3-L1 , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacologia , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Desoxiglucose/análogos & derivados , Desoxiglucose/farmacologia , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serpina E2/genética , Serpina E2/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo
7.
Cytotherapy ; 16(12): 1760-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25442789

RESUMO

BACKGROUND AIMS: Hippocampal neurodegeneration is one of the hallmarks in neurological and neurodegenerative diseases such as temporal lobe epilepsy and Alzheimer disease. Human embryonic kidney (HEK) cells are a mixed population of cells, including neurons, and their conditioned medium is enriched with erythropoietin (EPO). Because EPO is a known neuroprotectant, we hypothesized that infusion of HEK cells or HEK-conditioned medium (HEK-CM) may provide neuroprotection against kainic acid (KA)-induced hippocampal damage in mice. METHODS: Adult CF1 mice were treated with KA to induce hippocampal damage. On 3rd and 5th days after KA treatment, HEK cells or HEK-CM was infused intravenously through the tail vein. On the 7th and 8th days after KA treatment, all groups of mice were subjected to cognitive and depression assessment by use of a novel object recognition test and a forced swim test, respectively. Subsequent to this assessment, mice were killed and the brain samples were used to assess the histopathology and messenger RNA expression for EPO and B-cell lymphoma-2 (Bcl-2). RESULTS: We found that infusion of HEK cells/HEK-CM improves cognitive function and alleviates symptoms of depression. Histological assessment demonstrates complete neuroprotection against KA-mediated excitotoxicity, and the hippocampal cytoarchitecture of HEK cells/HEK-CM treated mice was comparable to normal control mice. HEK cells/HEK-CM treatment could provide neuroprotection by upregulating the endogenous EPO and Bcl-2 in KA-treated mice. CONCLUSIONS: Our present data demonstrate for the first time that infusion of HEK cells/HEK-CM can prevent excitotoxic hippocampal damage and alleviate consequent behavioral abnormalities.


Assuntos
Lesões Encefálicas , Meios de Cultivo Condicionados , Agonistas de Aminoácidos Excitatórios/efeitos adversos , Hipocampo/lesões , Ácido Caínico/efeitos adversos , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Células HEK293 , Hipocampo/metabolismo , Humanos , Ácido Caínico/farmacologia , Masculino , Camundongos , Fatores de Tempo
8.
Curr Diabetes Rev ; 19(5): e110422203402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35410613

RESUMO

Type 1 diabetes mellitus (T1DM), an autoimmune disease, involves the destruction of pancreatic ß cells. ß cells maintain glucose homeostasis by identifying blood glucose and accordingly releasing insulin to maintain normal physiologic glucose levels. Human umbilical cord blood (hUCB) cells pose a lesser risk of viral contamination due to low placental transmission during prenatal life. Additionally, they have advantages such as non-invasive harvest procedure gynecological waste, low immunogenicity, easy expansion in-vitro, and easy ethical access compared to deriving stem cells from other sources. According to the published preclinical data, the infusion of autologous cord blood cells is considered safe as they are non-antigenic. Depending on the degree of differentiation, the ability to regenerate themselves and the origin of many stem cell types can be differentiated. The application of stem cells (SCs) has great potential for managing T1DM due to their regenerative capabilities and promising immunological characteristics. Due to lesser ethical complications and easy procedures of isolation, hUCB has become a precious medical intervention.


Assuntos
Diabetes Mellitus Tipo 1 , Gravidez , Humanos , Feminino , Diabetes Mellitus Tipo 1/terapia , Placenta , Insulina , Células-Tronco , Glicemia
9.
RNA Biol ; 9(7): 949-53, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22767257

RESUMO

Cellular mechanisms that inhibit mRNA translation by regulatory molecules involving microRNAs (miRNAs), a class of noncoding RNAs (ncRNAs), are well recognized in recent days. However, methodologies that measure these changes in cell populations lack the capabilities to observe such effects at single cell resolution. This is mostly due to the low level of transcript abundance and the heterogeneity of cell populations, together with the inability to measure transcripts and proteins at the same time. Here, we combine an in situ TaqMan PCR method with immunostaining so as to amplify low abundance transcripts in cellular compartments and image these efficiently at single cell resolution. The method offers flexibility to end-users for further fine-tuning of this optimized protocol based on the number of PCR cycles for individual genes in any cell type. After immunostaining, confocal microscopy is performed to detect the fluorescence of TaqMan probes (representing amplified transcripts/miRNA) and fluorophores tagged to antibodies (representing proteins) simultaneously. The presented technique offers an important tool to understand functional genomics as well as molecular mechanism of transcriptional and translational regulation so as to map these at single cell resolution.


Assuntos
MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Vimentina/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Interferência de RNA , RNA Mensageiro/genética , Análise de Célula Única , Transcriptoma , Vimentina/genética
10.
Cytotherapy ; 13(3): 279-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21039304

RESUMO

BACKGROUND AIMS: The scarcity of human islets for transplantation remains a major limitation of cell replacement therapy for diabetes. Bone marrow-derived progenitor cells are of interest because they can be isolated, expanded and offered for such therapy under autologous/allogeneic settings. METHODS: We characterized and compared human bone marrow-derived mesenchymal cells (hBMC) obtained from (second trimester), young (1-24 years) and adult (34-81 years) donors. We propose a novel protocol that involves assessment of paracrine factors from regenerating pancreas in differentiation and maturation of hBMC into endocrine pancreatic lineage in vivo. RESULTS: We observed that donor age was inversely related to growth potential of hBMC. Following in vitro expansion and exposure to specific growth factors involved in pancreatic development, hBMC migrated and formed islet-like cell aggregates (ICA). ICA show increased abundance of pancreatic transcription factors (Ngn3, Brn4, Nkx6.1, Pax6 and Isl1). Although efficient differentiation was not achieved in vitro, we observed significant maturation and secretion of human c-peptide (insulin) upon transplantation into pancreactomized and Streptozotocin (STZ)-induced diabetic mice. Transplanted ICA responded to glucose and maintained normoglycemia in diabetic mice. CONCLUSIONS: Our data demonstrate that hBMC have tremendous in vitro expansion potential and can be differentiated into multiple lineages, including the endocrine pancreatic lineage. Paracrine factors secreted from regenerating pancreas help in efficient differentiation and maturation of hBMC, possibly via recruiting chromatin modulators, to generate glucose-responsive insulin-secreting cells.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Ilhotas Pancreáticas/citologia , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células da Medula Óssea/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Diabetes Mellitus Experimental/patologia , Feto/citologia , Glucose/farmacologia , Humanos , Lactente , Ilhotas Pancreáticas/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Adulto Jovem
11.
Cytotherapy ; 13(10): 1221-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21929379

RESUMO

BACKGROUND AIMS. Dental pulp stromal cells (DPSC) are considered to be a promising source of stem cells in the field of regenerative therapy. However, the usage of DPSC in transplantation requires large-scale expansion to cater for the need for clinical quantity without compromising current good manufacturing practice (cGMP). Existing protocols for cell culturing make use of fetal bovine serum (FBS) as a nutritional supplement. Unfortunately, FBS is an undesirable additive to cells because it carries the risk of transmitting viral and prion diseases. Therefore, the present study was undertaken to examine the efficacy of human platelet lysate (HPL) as a substitute for FBS in a large-scale set-up. METHODS. We expanded the DPSC in Dulbecco's modified Eagle's medium-knock-out (DMEM-KO) with either 10% FBS or 10% HPL, and studied the characteristics of DPSC at pre- (T25 culture flask) and post- (5-STACK chamber) large-scale expansion in terms of their identity, quality, functionality, molecular signatures and cytogenetic stability. RESULTS. In both pre- and post-large-scale expansion, DPSC expanded in HPL showed extensive proliferation of cells (c. 2-fold) compared with FBS; the purity, immune phenotype, colony-forming unit potential and differentiation were comparable. Furthermore, to understand the gene expression profiling, the transcriptomes and cytogenetics of DPSC expanded under HPL and FBS were compared, revealing similar expression profiles. CONCLUSIONS. We present a highly economized expansion of DPSC in HPL, yielding double the amount of cells while retaining their basic characteristics during a shorter time period under cGMP conditions, making it suitable for therapeutic applications.


Assuntos
Plaquetas/metabolismo , Extratos Celulares/química , Meios de Cultura Livres de Soro/farmacologia , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/metabolismo , Animais , Plaquetas/citologia , Bovinos , Diferenciação Celular/efeitos dos fármacos , Extratos Celulares/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/metabolismo , Meios de Cultura Livres de Soro/química , Polpa Dentária/citologia , Estudos de Viabilidade , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Medicina Regenerativa , Soro/metabolismo , Transcriptoma
12.
Clin Exp Vaccine Res ; 10(1): 1-5, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33628748

RESUMO

The incidence of type 1 diabetes mellitus (T1DM), an autoimmune disorder, has ascended considerably with around 98,200 and 15,900 incidents in children below 15 years of age, globally and in India, respectively. This is typically due to environmental changes leading to genetic modifications. Also, T1DM encompasses the presence of autoantigens and many other etiologies which can be targeted by proper immunization. In this paper, we consciously discuss and collate various candidate triggers of islet autoimmunity and other factors expected to promote progression of T1DM. This paper bridges all the mechanisms caused by these factors and linking them with each other. We have also highlighted on the novel corona virus as a trigger for T1DM. Finally, we suggest that an amalgamated model of polyvaccine can batter the condition by inducing protection against various triggers of T1DM.

13.
Curr Stem Cell Res Ther ; 16(3): 231-237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32564762

RESUMO

Pluripotent Stem Cells [PSCs] are emerging as an excellent cellular source for the treatment of many degenerative diseases such as diabetes, ischemic heart failure, Alzheimer's disease, etc. PSCderived pancreatic islet ß-cells appear to be a promising therapy for type 1 diabetic patients with impaired ß-cell function. Several protocols have been developed to derive ß-cells from PSCs. However, these protocols produce ß-like cells that show low glucose stimulated insulin secretion (GSIS) function and mirror GSIS profile of functionally immature neonatal ß-cells. Several studies have documented a positive correlation between the sirtuins (a family of ageing-related proteins) and the GSIS function of adult ß-cells. We are of the view that the GSIS function of PSC-derived ß-like cells could be enhanced by improving the function of sirtuins in them. Studying the sirtuin expression and activation pattern during the ß-cell development and inclusion of the sirtuin activators and inhibitor cocktail (specific to a developmental stage) in the present protocols may help us derive functionally mature, ready-to-use ß- cells in-vitro making them suitable for transplantation in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Diabetes Mellitus Tipo 1/terapia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Células-Tronco Pluripotentes/citologia
14.
Curr Diabetes Rev ; 17(2): 136-142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32619172

RESUMO

Diabetes is a chronic metabolic disorder of the endocrine system characterized by an increase in blood glucose level. Several factors, such as pancreatic damage, oxidative stress, infection, genetic factor, obesity, liver dysfunction, play a vital role in the pathogenesis of diabetes, which further leads to serious diabetic complications. The diabetic wound is one such complication where the wound formation occurs, especially due to pressure and its healing process is disrupted due to factors, such as hyperglycemia, neuropathy, nephropathy, peripheral vascular disease, reduction of blood flow, atherosclerosis, impaired fibroblast. The process of wound healing is delayed due to different abnormalities like alteration in nitric oxide level, increase in aldose reductase, sorbitol, and fructose. Therefore, diabetic wound requires more time to heal as compared to the normal wound. Healing time is delayed in diabetic wound due to many factors, such as stress, decreased oxygenation supply, infection, decreased blood flow, impaired proliferation and migration rate, impaired growth factor production, impaired keratinocytes proliferation and migration, and altered vascular endothelial mediators. The current treatment for diabetic wounds includes wound patches, oxygenation therapy, hydrogel patches, gene therapy, laser therapy, and stem cell therapy. Medications with phytoconstituents are also one way to manage the diabetic wound, but it is not more effective for quick healing. The objective of this review is to understand the potential of various management options which are available for diabetic wound, with a special focus on biological cells.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Humanos , Estresse Oxidativo , Transplante de Células-Tronco , Cicatrização
15.
Stem Cells ; 27(8): 1941-53, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19544426

RESUMO

The success of cell replacement therapy for diabetes depends on the availability and generation of an adequate number of islets, preferably from an autologous origin. Stem cells are now being probed for the generation of physiologically competent, insulin-producing cells. In this investigation, we explored the potential of adipose tissue-derived stem cells (ASCs) to differentiate into pancreatic hormone-expressing islet-like cell aggregates (ICAs). We initiated ASC culture from epididymal fat pads of Swiss albino mice to obtain mesenchymal cells, murine epididymal (mE)-ASCs. Subsequent single-cell cloning resulted in a homogeneous cell population with a CD29(+)CD44(+)Sca-1(+) surface antigen expression profile. We formulated a 10-day differentiation protocol to generate insulin-expressing ICAs from mE-ASCs by progressively changing the differentiation cocktail on day 1, day 3, and day 5. Our stage-specific approach successfully differentiated mesodermic mE-ASCs into definitive endoderm (cells expressing Sox17, Foxa2, GATA-4, and cytokeratin [CK]-19), then into pancreatic endoderm (cells expressing pancreatic and duodenal homeobox [PDX]-1, Ngn3, NeuroD, Pax4, and glucose transporter 2), and finally into cells expressing pancreatic hormones (insulin, glucagon, somatostatin). Fluorescence-activated cell sorting analysis showed that day 5 ICAs contained 64.84% +/- 7.03% PDX-1(+) cells, and in day 10 mature ICAs, 48.17% +/- 3% of cells expressed C-peptide. Day 10 ICAs released C-peptide in a glucose-dependent manner, exhibiting in vitro functionality. Electron microscopy of day 10 ICAs revealed the presence of numerous secretory granules within the cell cytoplasm. Calcium alginate-encapsulated day 10 ICAs (1,000-1,200), when transplanted i.p. into streptozotocin-induced diabetic mice, restored normoglycemia within 2 weeks. The data presented here demonstrate the feasibility of using ASCs as a source of autologous stem cells to differentiate into the pancreatic lineage.


Assuntos
Tecido Adiposo/citologia , Ilhotas Pancreáticas/citologia , Hormônios Pancreáticos/biossíntese , Células-Tronco/citologia , Animais , Agregação Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Diabetes Mellitus Experimental/terapia , Endoderma/metabolismo , Epididimo , Regulação da Expressão Gênica , Insulina/metabolismo , Ilhotas Pancreáticas/crescimento & desenvolvimento , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Estreptozocina
16.
Cytotherapy ; 12(8): 982-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20807019

RESUMO

BACKGROUND AIMS: The ethical and biologic limitations with current sources of stem cells have resulted in a quest to look for alternative sources of multipotent stem cells of human origin. Amniotic membrane is of interest as a source of cells for regenerative medicine because of its ease of availability, plasticity and inexhaustible source that does not violate the sanctity of independent life. Although researchers have shown the stem cell-like potential of human amniotic epithelial cells, the mesenchymal part of amnion has remained less explored. METHODS: We established a long-term culture of mesenchymal-like stem cells derived from full-term human amniotic membrane and their differentiation into functional pancreatic lineage. RESULTS: The amnion-derived mesenchymal-like stem cells expressed various mesenchymal markers and demonstrated multilineage differentiation capacity. We also observed that these cells could form islet-like clusters (ILC) on exposure to serum-free defined media containing specific growth factor and differentiating agents. Differentiated ILC showed expression of human insulin, glucagon and somatostatin by immunocytochemistry, while quantitative reverse transcription/real-time-polymerase chain reaction (qRT-PCR) data demonstrated the expression of insulin, glucagon, somatostatin, Ngn3 and Isl1. Moreover, encapsulation of the ILC in polyurethane-polyvinyl pyrrolidone macrocapsules and their subsequent transplantation in experimental diabetic mice resulted in restoration of normoglycemia, indicating their ability to respond to high glucose without immunorejection. CONCLUSIONS: Our results demonstrate that amnion-derived mesenchymal stromal cells can undergo islet neogenesis, indicating amnion as an alternative source of islets for cell replacement therapy in diabetes.


Assuntos
Âmnio/citologia , Diabetes Mellitus Experimental/terapia , Rejeição de Enxerto/imunologia , Ilhotas Pancreáticas/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo , Animais , Cápsulas/química , Cápsulas/uso terapêutico , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Rejeição de Enxerto/prevenção & controle , Humanos , Ilhotas Pancreáticas/citologia , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Poliuretanos/química , Poliuretanos/metabolismo , Povidona/química , Povidona/metabolismo , Células Estromais/citologia , Transplante Heterólogo
17.
Med Hypotheses ; 144: 110034, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32758878

RESUMO

Management of Type 2 Diabetes (T2DM) with existing strategies of life style and pharmaceutical interventions has gained limited success as evidenced by its uncontrolled progression. Two key organs which are involved in pathophysiology of T2DM are liver and pancreas, both are the derivatives of endoderm with common precursor. In the invertebrates, hepatopancreas performs function of both liver and pancreas. It is known that derangement in glycolysis, neoglucogenesis, and glycogenolysis lead to hyperglycemia in T2DM although insulin levels are high. Several studies have reported implication of abnormal liver function in the development of metabolic syndrome i.e. T2DM. Partial hepatectomy has been shown to improve glycemic status in animal models of diabetes. This could be because liver and pancreas share same regenerating factors. These evidences suggest that abnormal liver status can impair pancreatic beta cell function and survival along with peripheral insulin resistance. We therefore hypothesize that restoring deranged liver functions may aid in the better control and management of T2DM. If found true, it may shift current intervention strategy towards liver rather than pancreas in the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Animais , Insulina , Fígado
18.
Dev Biol ; 311(2): 603-12, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17936263

RESUMO

The mammalian pancreas is known to show a remarkable degree of regenerative ability. Several studies until now have demonstrated that the mammalian pancreas can regenerate in normal as well as diabetic conditions. These studies illustrate that pancreatic transcription factors that are seen to be expressed in a temporal fashion during development are re-expressed during regeneration. The only known exception to this is Neurogenin3 (NGN3). Though NGN3 protein, which marks all the pro-endocrine cells during development, is not seen during mouse pancreas regeneration, functional neo-islets are generated by 4 weeks after 70% pancreatectomy. We observed that pancreatic transcription factors upstream of ngn3 showed similar gene expression patterns during development and regeneration. However, gene transcripts of transcription factors immediately downstream of ngn3 (neuroD and nkx2.2) did not show such similarities in expression. Since NGN3 protein was not detected at any time point during regeneration, we reasoned that post-transcriptional silencing of ngn3 by microRNAs may be a possible mechanism. We carried out microRNA analysis of 283 known and validated mouse microRNAs during different stages of pancreatic development and regeneration and identified that 4 microRNAs; miR-15a, miR-15b, miR-16 and miR-195, which can potentially bind to ngn3 transcript, are expressed at least 200-fold higher in the regenerating mouse pancreas as compared to embryonic day (e) 10.5 or e 16.5 developing mouse pancreas. Inhibition of these miRNAs in regenerating pancreatic cells using anti-sense miRNA-specific inhibitors, induces expression of NGN3 and its downstream players: neuroD and nkx2.2. Similarly, overexpression of miRNAs targeting ngn3 during pancreas development shows reduction in the number of hormone-producing cells. It appears that during pancreatic regeneration in mice, increased expression of these microRNAs allows endocrine regeneration via an alternate pathway that does not involve NGN3 protein. Our studies on microRNA profiling of developing and regenerating pancreas provide us with better understanding of mechanisms that regulate post-natal islet neogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/crescimento & desenvolvimento , Pâncreas/fisiologia , Regeneração/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Análise por Conglomerados , Feminino , Glucagon/genética , Glucagon/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Insulina/genética , Insulina/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares , Pâncreas/citologia , Fatores de Transcrição
19.
Life Sci ; 82(3-4): 182-9, 2008 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18093618

RESUMO

Limited recovery of islets post-cryopreservation influences graft survival and transplantation efficiency during diabetes treatment. As curcumin, a potent antioxidant/radical scavenging compound, protects islets against beta cell toxins, we hypothesized that inclusion of curcumin during cryopreservation or during post-thaw culture or both may rescue islets from cryoinjury. To test the effect of curcumin inclusion on islet recovery murine islets were isolated by the collagenase digestion, cultured for 48 h, cryopreserved using dimethylsulphoxide as cryoprotectant -- with or without curcumin (10 microM) -- and then slow cooled to -40 degrees C before immersing them in liquid nitrogen for 7 days. Following rapid thawing with sucrose gradient and 24 h post-thaw culture -- in presence or absence of curcumin (10 microM) -- islet viability and functionality were determined. Islet recovery in curcumin treated groups was significantly higher than in groups where islets were cryopreserved without curcumin. Islets cryopreserved with curcumin also showed more intact islets as well as better morphology as compared to islets cryopreserved without curcumin. Curcumin treated islets also showed significant inhibition of ROS generation as compared to islets cryopreserved without curcumin. Glucose responsiveness and insulin secretion in islets cryopreserved with curcumin was equal to that of the freshly isolated islets as against islets cryopreserved without curcumin. Elevated level of Hsp 70 and HO-1 were observed in islets cryopreserved with curcumin and may contribute to curcumin-induced islet rescue. Hence, we conclude that inclusion of curcumin into cryopreservation medium inhibits ROS generation and corresponding islet damage and dysfunction.


Assuntos
Crioprotetores/farmacologia , Curcumina/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Preservação de Tecido , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Criopreservação/métodos , Relação Dose-Resposta a Droga , Feminino , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo
20.
World J Gastroenterol ; 14(46): 7112-6, 2008 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19084919

RESUMO

AIM: To localize nestin positive cells (NPC) in pancreatic tissue of mice of different ages. METHODS: Paraffin sections of 6-8 mum of fixed pancreatic samples were mounted on poly-L-lysine coated slides and used for Immunolocalization using appropriate primary antibodies (Nestin, Insulin, Glucagon), followed by addition of a fluorescently labeled secondary antibody. The antigen-antibody localization was captured using a confocal microscope (Leica SP 5 series). RESULTS: In 3-6 d pups, the NPC were localized towards the periphery of the endocrine portion, as evident from immunolocalization of insulin and glucagon, while NPC were absent in the acinar portion. At 2 wk, NPC were localized in both the exocrine and endocrine portions. Interestingly, in 4-wk-old mice NPC were seen only in the endocrine portion, towards the periphery, and were colocalised with the glucagon positive cells. In the pancreas of 8- wk-old mice, the NPC were predominantly localized in the central region of the islet clusters, where immunostaining for insulin was at a maximum. CONCLUSION: We report for the first time the immunolocalization of NPC in the pancreas of mice of different ages (3 d to 8 wk) with reference to insulin and glucagon positive cells. The heterogeneous localization of the NPC observed may be of functional and developmental significance and suggest(s) that mice pancreatic tissue can be a potential source of progenitor cells. NPC from the pancreas can be isolated, proliferated and programmed to differentiate into insulin secreting cells under the appropriate microenvironment.


Assuntos
Envelhecimento/metabolismo , Animais Recém-Nascidos/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Animais , Glucagon/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Masculino , Camundongos , Nestina , Pâncreas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA