Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(5): 2354-2365, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964839

RESUMO

Safely achieving the goals of the Paris Climate Agreement requires a worldwide transformation to carbon-neutral societies within the next 30 y. Accelerated technological progress and policy implementations are required to deliver emissions reductions at rates sufficiently fast to avoid crossing dangerous tipping points in the Earth's climate system. Here, we discuss and evaluate the potential of social tipping interventions (STIs) that can activate contagious processes of rapidly spreading technologies, behaviors, social norms, and structural reorganization within their functional domains that we refer to as social tipping elements (STEs). STEs are subdomains of the planetary socioeconomic system where the required disruptive change may take place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions. The results are based on online expert elicitation, a subsequent expert workshop, and a literature review. The STIs that could trigger the tipping of STE subsystems include 1) removing fossil-fuel subsidies and incentivizing decentralized energy generation (STE1, energy production and storage systems), 2) building carbon-neutral cities (STE2, human settlements), 3) divesting from assets linked to fossil fuels (STE3, financial markets), 4) revealing the moral implications of fossil fuels (STE4, norms and value systems), 5) strengthening climate education and engagement (STE5, education system), and 6) disclosing information on greenhouse gas emissions (STE6, information feedbacks). Our research reveals important areas of focus for larger-scale empirical and modeling efforts to better understand the potentials of harnessing social tipping dynamics for climate change mitigation.

2.
Proc Natl Acad Sci U S A ; 119(45): e2214975119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322727
3.
Ecotoxicol Environ Saf ; 126: 219-227, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26773831

RESUMO

The present study aims to assess the arsenic (As) levels into dust samples and its implications for human health, of four ecological zones of Pakistan, which included northern frozen mountains (FMZ), lower Himalyian wet mountains (WMZ), alluvial riverine plains (ARZ), and low lying agricultural areas (LLZ). Human nail samples (N=180) of general population were also collected from the similar areas and all the samples were analysed by using ICP-MS. In general the higher levels (p<0.05) in paired dust and human nail samples were observed from ARZ and LLZ than those of other mountainous areas (i.e., WMZ and FMZ), respectively. Current results suggested that elevated As concentrations were associated to both natural, (e.g. geogenic influences) and anthropogenic sources. Linear regression model values indicated that As levels into dust samples were associated with altitude (r(2)=0.23), soil carbonate carbon density (SCC; r(2)=0.33), and population density (PD; r(2)=0.25). The relationship of paired dust and nail samples was also investigated and associations were found for As-nail and soil organic carbon density (SOC; r(2)=0.49) and SCC (r(2)=0.19) in each studied zone, evidencing the dust exposure as an important source of arsenic contamination in Pakistan. Risk estimation reflected higher hazard index (HI) values of non-carcinogenic risk (HI>1) for children populations in all areas (except FMZ), and for adults in LLZ (0.74) and ARZ (0.55), suggesting that caution should be paid about the dust exposure. Similarly, carcinogenic risk assessment also highlighted potential threats to the residents of LLZ and ARZ, as in few cases (5-10%) the values exceeded the range of US-EPA threshold limits (10(-6)-10(-4)).


Assuntos
Arsênio/análise , Carcinógenos/análise , Poeira/análise , Exposição Ambiental , Adulto , Criança , Fenômenos Ecológicos e Ambientais , Feminino , Humanos , Masculino , Unhas/química , Paquistão , Medição de Risco , Solo/química
4.
PLoS One ; 14(1): e0208949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30601832

RESUMO

Rapid and extensive urbanization has adversely impacted humans and ecological entities in the recent decades through a decrease in surface permeability and the emergence of Urban Heat Islands (UHI). While detailed and continuous assessments of surface permeability and UHI are crucial for urban planning and management of landuse zones, they mostly involve time consuming and expensive field studies and single sensor derived large scale aerial and satellite imageries. We demonstrated the advantage of fusing imageries from multiple sensors for landuse and landcover (LULC) change assessments as well as for assessing surface permeability and temperature and UHI emergence in a fast growing city, i.e. Tirunelveli, Tamilnadu, India. IRS-LISSIII and Landsat-7 ETM+ imageries were fused for 2007 and 2017, and classified using a Rotation Forest (RF) algorithm. Surface permeability and temperature were then quantified using Soil-Adjusted Vegetation Index (SAVI) and Land Surface Temperature (LST) index, respectively. Finally, we assessed the relationship between SAVI and LST for entire Tirunelveli as well as for each LULC zone, and also detected UHI emergence hot spots using a SAVI-LST combined metric. Our fused images exhibited higher classification accuracies, i.e. overall kappa coefficient values, than non-fused images. We observed an overall increase in the coverage of urban (dry, real estate plots and built-up) areas, while a decrease for vegetated (cropland and forest) areas in Tirunelveli between 2007 and 2017. The SAVI values indicated an extensive decrease in surface permeability for Tirunelveli overall and also for almost all LULC zones. The LST values showed an overall increase of surface temperature in Tirunelveli with the highest increase for urban built-up areas between 2007 and 2017. LST also exhibited a strong negative association with SAVI. Southeastern built-up areas in Tirunelveli were depicted as a potential UHI hotspot, with a caution for the Western riparian zone for UHI emergence in 2017. Our results provide important metrics for surface permeability, temperature and UHI monitoring, and inform urban and zonal planning authorities about the advantages of satellite image fusion.


Assuntos
Imagens de Satélites/métodos , Monitoramento Ambiental/métodos , Humanos , Índia , Temperatura , Urbanização
5.
Sci Total Environ ; 618: 829-837, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29146075

RESUMO

In the current study, Persistent Organic Pollutants (POPs) in outdoor dustfall was monitored for the first time along the Indus river system of Pakistan. Among the studied OCPs (ng/g, dry weight), DDTs (0.16-62) were the predominant contaminants identified in deposited dust followed by HCHs (0.1-10.2), HCB (0.09-7.4) and chlordanes (0.1-2.8). The indicative diagnostic ratio for DDTs and HCHs suggested recent emission of DDTs as well as historical emission of both chemicals in regions where they were used for crop protection and malarial control. The levels of ∑31PCBs (ng/g, dry weight) in dust ranged from 0.95-125, and compositional profiles suggested arochlor-1248, -1254 commercial mixtures as source. A few exceptions were samples from urban areas that reflected the use of aroclor-1260, and-1262 and/or unintentional leakage from several industrial processes. The WHO05-TEQ values for dioxin-like PCBs (with major contributions of PCB-126) were found to be 0.07-34.5 (median; 1.87) pg TEQg-1dw for all the studied samples. Correlation analysis identified that DDTs, HCHs, HCB and PCBs were significantly associated (r=90; p<0.01) with dusts collected in proximity to urban centers with widespread anthropogenic activities in these areas. A few cases where high levels of POPs from remote mountain highlands were detected, point to the potential for long range transport of these chemicals. Human risk assessment analysis of contaminated dust showed that DDTs and PCBs are major constituent chemicals of concern with regard to the development of cancer in children, with ingestion being the main route of exposure of dust-borne DDTs (0.12-1.03×10-6) and PCBs (0.86-12.43×10-6).


Assuntos
Poluentes Atmosféricos/análise , Poeira , Monitoramento Ambiental , Humanos , Hidrocarbonetos Clorados/análise , Paquistão , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Medição de Risco , Análise Espacial
6.
Sci Total Environ ; 573: 680-689, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27589819

RESUMO

Given the multitude of pesticides used in agriculture, adjacent streams are typically exposed to pesticide mixtures. Previous studies analysed the ecological risks of a few pesticide mixtures or were limited to an individual region or crop, whereas a large scale analysis of pesticide mixtures is missing. We analysed routine monitoring data from Germany, France, the Netherlands and the USA comprising a total of 4532 sites and 56,084 sampling occasions with the aim to identify the most frequently detected pesticides, their metabolites and mixtures. The most frequently detected compounds were dominated by herbicides and their metabolites. Mixtures mostly comprised of two up to five compounds, whereas mixtures in the USA and France had clearly less compounds than those of Germany and the Netherlands. The number of detected pesticides and thereby the size of mixtures is positively correlated to the number of measured pesticides (r=0.57). In contrast, a low relationship was found to the ratio of agricultural areas within the catchment (r=0.17), and no relationship was found to the size of the catchment (r=0.06). Overall, our study provides priority mixtures for different countries that may be used for future ecotoxicological studies to improve risk assessment for stream ecosystems.


Assuntos
Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Europa (Continente) , Estados Unidos
7.
Sci Total Environ ; 569-570: 585-593, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27372253

RESUMO

Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots.


Assuntos
Poeira/análise , Exposição Ambiental/análise , Poluentes Ambientais/análise , Mercúrio/análise , Adulto , Criança , Monitoramento Ambiental , Cabelo/química , Humanos , Paquistão , Medição de Risco
8.
Environ Pollut ; 213: 213-222, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26901073

RESUMO

This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan.


Assuntos
Poeira/análise , Monitoramento Ambiental/métodos , Metais Pesados/química , Oligoelementos/química , Adulto , Criança , Ecossistema , Poluição Ambiental , Humanos , Paquistão , Medição de Risco , Rios
9.
PLoS One ; 10(6): e0130025, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26080074

RESUMO

Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.


Assuntos
Organismos Aquáticos , Clima , Insetos , Animais , Comportamento Animal , Insetos/classificação , Estações do Ano , Análise Espacial
10.
Sci Total Environ ; 538: 306-16, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26312405

RESUMO

The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150-200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots.


Assuntos
Água Potável/química , Exposição Ambiental/estatística & dados numéricos , Metais/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Humanos , Paquistão , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA