RESUMO
In recent years, the number of studies using whole-slide imaging (WSIs) of histopathology slides has expanded significantly. For the development and validation of artificial intelligence (AI) systems, glass slides from retrospective cohorts including patient follow-up data have been digitized. It has become crucial to determine that the quality of such resources meets the minimum requirements for the development of AI in the future. The need for automated quality control is one of the obstacles preventing the clinical implementation of digital pathology work processes. As a consequence of the inaccuracy of scanners in determining the focus of the image, the resulting visual blur can render the scanned slide useless. Moreover, when scanned at a resolution of 20× or higher, the resulting picture size of a scanned slide is often enormous. Therefore, for digital pathology to be clinically relevant, computational algorithms must be used to rapidly and reliably measure the picture's focus quality and decide if an image requires re-scanning. We propose a metric for evaluating the quality of digital pathology images that uses a sum of even-derivative filter bases to generate a human visual-system-like kernel, which is described as the inverse of the lens' point spread function. This kernel is then used for a digital pathology image to change high-frequency image data degraded by the scanner's optics and assess the patch-level focus quality. Through several studies, we demonstrate that our technique correlates with ground-truth z-level data better than previous methods, and is computationally efficient. Using deep learning techniques, our suggested system is able to identify positive and negative cancer cells in images. We further expand our technique to create a local slide-level focus quality heatmap, which can be utilized for automated slide quality control, and we illustrate our method's value in clinical scan quality control by comparing it to subjective slide quality ratings. The proposed method, GoogleNet, VGGNet, and ResNet had accuracy values of 98.5%, 94.5%, 94.00%, and 95.00% respectively.
Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias , Algoritmos , Inteligência Artificial , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Estudos RetrospectivosRESUMO
Researchers have recently focused their attention on vision-based hand gesture recognition. However, due to several constraints, achieving an effective vision-driven hand gesture recognition system in real time has remained a challenge. This paper aims to uncover the limitations faced in image acquisition through the use of cameras, image segmentation and tracking, feature extraction, and gesture classification stages of vision-driven hand gesture recognition in various camera orientations. This paper looked at research on vision-based hand gesture recognition systems from 2012 to 2022. Its goal is to find areas that are getting better and those that need more work. We used specific keywords to find 108 articles in well-known online databases. In this article, we put together a collection of the most notable research works related to gesture recognition. We suggest different categories for gesture recognition-related research with subcategories to create a valuable resource in this domain. We summarize and analyze the methodologies in tabular form. After comparing similar types of methodologies in the gesture recognition field, we have drawn conclusions based on our findings. Our research also looked at how well the vision-based system recognized hand gestures in terms of recognition accuracy. There is a wide variation in identification accuracy, from 68% to 97%, with the average being 86.6 percent. The limitations considered comprise multiple text and interpretations of gestures and complex non-rigid hand characteristics. In comparison to current research, this paper is unique in that it discusses all types of gesture recognition techniques.
RESUMO
This research enhances crowd analysis by focusing on excessive crowd analysis and crowd density predictions for Hajj and Umrah pilgrimages. Crowd analysis usually analyzes the number of objects within an image or a frame in the videos and is regularly solved by estimating the density generated from the object location annotations. However, it suffers from low accuracy when the crowd is far away from the surveillance camera. This research proposes an approach to overcome the problem of estimating crowd density taken by a surveillance camera at a distance. The proposed approach employs a fully convolutional neural network (FCNN)-based method to monitor crowd analysis, especially for the classification of crowd density. This study aims to address the current technological challenges faced in video analysis in a scenario where the movement of large numbers of pilgrims with densities ranging between 7 and 8 per square meter. To address this challenge, this study aims to develop a new dataset based on the Hajj pilgrimage scenario. To validate the proposed method, the proposed model is compared with existing models using existing datasets. The proposed FCNN based method achieved a final accuracy of 100%, 98%, and 98.16% on the proposed dataset, the UCSD dataset, and the JHU-CROWD dataset, respectively. Additionally, The ResNet based method obtained final accuracy of 97%, 89%, and 97% for the proposed dataset, UCSD dataset, and JHU-CROWD dataset, respectively. The proposed Hajj-Crowd-2021 crowd analysis dataset and the model outperformed the other state-of-the-art datasets and models in most cases.
RESUMO
BACKGROUND: This paper focuses on advances in crowd control study with an emphasis on high-density crowds, particularly Hajj crowds. Video analysis and visual surveillance have been of increasing importance in order to enhance the safety and security of pilgrimages in Makkah, Saudi Arabia. Hajj is considered to be a particularly distinctive event, with hundreds of thousands of people gathering in a small space, which does not allow a precise analysis of video footage using advanced video and computer vision algorithms. This paper aims to propose an algorithm based on a Convolutional Neural Networks model specifically for Hajj applications. Additionally, the work introduces a system for counting and then estimating the crowd density. METHODS: The model adopts an architecture which detects each person in the crowd, spots head location with a bounding box and does the counting in our own novel dataset (HAJJ-Crowd). RESULTS: Our algorithm outperforms the state-of-the-art method, and attains a remarkable Mean Absolute Error result of 200 (average of 82.0 improvement) and Mean Square Error of 240 (average of 135.54 improvement). CONCLUSIONS: In our new HAJJ-Crowd dataset for evaluation and testing, we have a density map and prediction results of some standard methods.