Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 49(6): 686-695, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35320597

RESUMO

Diabetic nephropathy (DN), one of microvascular complications of diabetes mellitus, results in renal dysfunction and end-stage renal disease. Recently, endothelial-to-mesenchymal transition (EndMT) was reported to mediate glomerular endothelial dysfunction, therefore, participating in the progress of fibrosis in DN. As a special type of epithelial-to-mesenchymal transition, EndMT and epithelial-to-mesenchymal transition may share corporate modulators. It was reported that epidermal growth factor (EGF), latrophilin and seven transmembrane domain containing 1 (ELTD1) and signal transducer and activator of transcription 5A (STAT5A) participate in epithelial-to-mesenchymal transition in some situations. In this work, we proposed that STAT5A participated in high glucose-mediated EndMT via modulation of ELTD1 levels in DN. Our data indicated that hyperglycemia/high glucose-induced ELTD1 and EndMT in DN rats and hyperglycemic human glomerular endothelial cells (HGECs). Additionally, high glucose mediated STAT5A nuclear translocation in HGECs. High glucose-mediated EndMT was reversed by ELTD1 silencing. Moreover, STAT5A was found to be elevated in DN rats and hyperglycemic HGECs. The effect of high glucose-mediated increase of ELTD1 expression and EndMT was reversed by STAT5A silencing in vitro. Further, STAT5A overexpression enhanced ELTD1 levels and EndMT, which was inhibited by si-ELTD1. Chromatin immunoprecipitation (ChIP) and luciferase assay represented that STAT5A directly regulated ELTD1 transcription. Signal transducer and activator of transcription 5A directly regulated ELTD1 transcription, therefore, participating in high glucose-mediated EndMT in glomeruli of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Glucose/metabolismo , Glucose/toxicidade , Ratos , Fator de Transcrição STAT5/metabolismo , Regulação para Cima
2.
Appl Environ Microbiol ; 81(15): 5257-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025895

RESUMO

Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to inactivate Escherichia coli cells suspended in aqueous solution. Measurements show that the efficiency of inactivation of E. coli cells is strongly dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2 and He microplasma arrays, air and O2 microplasma arrays may be utilized to more efficiently kill E. coli cells in aqueous solution. The efficiencies of inactivation of E. coli cells in water can be well described by using the chemical reaction rate model, where reactive oxygen species play a crucial role in the inactivation process. Analysis indicates that plasma-generated reactive species can react with E. coli cells in water by direct or indirect interactions.


Assuntos
Pressão Atmosférica , Escherichia coli/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Gases em Plasma/toxicidade , Ar , Hélio/toxicidade , Nitrogênio/toxicidade , Oxigênio/toxicidade , Espécies Reativas de Oxigênio/toxicidade , Microbiologia da Água
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123134, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37480807

RESUMO

In this work, we reported the synthesis and characteristic luminescence of an orange-red emitting phosphor NaBa10Y5W4O30: Eu3+ for ultra-violet white light emitting diodes. The phase compound, crystalline structure and morphology are analyzed. The results indicate that a heavy doping of Eu3+ (x = 50%) is realized in NaBa10Y5-5xW4O30: xEu3+ without any impurity phase. Moreover, the optical band gap is analyzed by diffuse reflectance spectroscopy and further confirmed by density function theory (DFT). Meanwhile, the as-synthesized NaBa10Y5W4O30: Eu3+ phosphor can be efficiently pumped by strong broad-band excitation around 315 nm due to the charge transfer transition from [WO6]6- groups to Eu3+. Owing to the highly symmetric lattice environment of Eu3+ in YO6 sites, a strong orange-red emission at 596 nm with color purity of 95.34% is obtained, corresponding to the 5D0→7F1 magnetic dipole transition of Eu3+ ions. The critical concentration is obtained to be x = 15%, and the quenching mechanism is discussed to be dipole-dipole interaction. Furthermore, the temperature dependent emission behavior are analyzed, and the thermal quenching mechanism are explained by the variable temperature decay curve and configuration coordination diagram. Finally, an orange-red light emitting diode lamp is fabricated based on NaBa10Y5W4O30: 15%Eu3+ phosphor and 315 nm semiconductor chip. In summary, the results indicate that NaBa10Y5W4O30: Eu3+ phosphor has the potential to be an orange-red phosphor for white light emitting diodes.

4.
Adv Mater ; 34(14): e2109330, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35112406

RESUMO

Plasmonic nanostructures have tremendous potential to be applied in photocatalytic CO2 reduction, since their localized surface plasmon resonance can collect low-energy-photons to derive energetic "hot electrons" for reducing the CO2 activation-barrier. However, the hot electron-driven CO2 reduction is usually limited by poor efficiency and low selectivity for producing kinetically unfavorable hydrocarbons. Here, a new idea of plasmonic active "hot spot"-confined photocatalysis is proposed to overcome this drawback. W18 O49 nanowires on the outer surface of Au nanoparticles-embedded TiO2 electrospun nanofibers are assembled to obtain lots of Au/TiO2 /W18 O49 sandwich-like substructures in the formed plasmonic heterostructure. The short distance (< 10 nm) between Au and adjacent W18 O49 can induce an intense plasmon-coupling to form the active "hot spots" in the substructures. These active "hot spots" are capable of not only gathering the incident light to enhance "hot electrons" generation and migration, but also capturing protons and CO through the dual-hetero-active-sites (Au-O-Ti and W-O-Ti) at the Au/TiO2 /W18 O49 interface, as evidenced by systematic experiments and simulation analyses. Thus, during photocatalytic CO2 reduction at 43± 2 °C, these active "hot spots" enriched in the well-designed Au/TiO2 /W18 O49 plasmonic heterostructure can synergistically confine the hot-electron, proton, and CO intermediates for resulting in the CH4 and CO production-rates at ≈35.55 and ≈2.57 µmol g-1 h-1 , respectively, and the CH4 -product selectivity at ≈93.3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA