Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8007): 313-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570689

RESUMO

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.

2.
Chemistry ; 25(1): 189-194, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30351453

RESUMO

Converting renewable biomass and their derivatives into chemicals and fuels has received much attention to reduce the dependence on fossil resources. Photocatalytic ethanol dehydrogenation-acetalization to prepare value-added 1,1-diethoxyethane and H2 was achieved over non-precious metal CdS/Ni-MoS2 catalyst under visible light. The system displays an excellent production rate and high selectivity of 1,1-diethoxyethane, 52.1 mmol g-1 h-1 and 99.2 %, respectively. In-situ electron spin resonance, photoluminescence spectroscopy and transient photocurrent responses were conducted to investigate the mechanism. This study provides a promising strategy for a green application of bioethanol.

3.
Sci Bull (Beijing) ; 69(13): 2071-2079, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734585

RESUMO

High-voltage and fast-charging LiCoO2 (LCO) is key to high-energy/power-density Li-ion batteries. However, unstable surface structure and unfavorable electronic/ionic conductivity severely hinder its high-voltage fast-charging cyclability. Here, we construct a Li/Na-B-Mg-Si-O-F-rich mixed ion/electron interface network on the 4.65 V LCO electrode to enhance its rate capability and long-term cycling stability. Specifically, the resulting artificial hybrid conductive network enhances the reversible conversion of Co3+/4+/O2-/n- redox by the interfacial ion-electron cooperation and suppresses interface side reactions, inducing an ultrathin yet compact cathode electrolyte interphase. Simultaneously, the derived near-surface Na+/Mg2+/Si4+-pillared local intercalation structure greatly promotes the Li+ diffusion around the 4.55 V phase transition and stabilizes the cathode interface. Finally, excellent 3 C (1 C = 274 mA g-1) fast charging performance is demonstrated with 73.8% capacity retention over 1000 cycles. Our findings shed new insights to the fundamental mechanism of interfacial ion/electron synergy in stabilizing and enhancing fast-charging cathode materials.

4.
Mol Plant ; 13(12): 1733-1751, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32896642

RESUMO

Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding.


Assuntos
Efeito Fundador , Genoma de Planta , Melhoramento Vegetal , Seleção Genética , Análise de Sequência de DNA , Triticum/genética , Cromossomos de Plantas/genética , Variação Genética , Genética Populacional , Genótipo , Geografia , Haplótipos/genética , Endogamia , Desequilíbrio de Ligação/genética , Linhagem
5.
ACS Appl Mater Interfaces ; 11(12): 11421-11430, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30801167

RESUMO

Phosphorus doping is an effective approach to tailor the surface chemistry of carbon materials. In this work, two-dimensional graphene, as a simplified model for all sp2 hybrid carbon allotropes, is employed to explore the surface chemistry of P-doped carbon materials. Thermally reduced graphene oxide, with abundant residual oxygen functionalities, is doped by phosphorus heteroatoms through H3PO4 activation, followed by passivation in an inert atmosphere. The structural evolution of the phosphorus species in the carbon lattice during the thermal treatment is systematically studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy with the assistance of first-principles calculations. The C3-P═O configuration is identified as the most stable structure in the graphene lattice and plays a key role in stabilizing the electrochemical interface between the electrode and electrolyte. These features enable an electrode based on P-doped graphene to exhibit an enlarged potential window of 1.5 V in an aqueous electrolyte, a remarkable improved cycling stability, and an ultralow leak current. Therefore, this contribution provides insights for designing phosphorus-doped carbon materials toward electrocatalysis, energy-related applications, and so forth.

6.
PLoS One ; 10(3): e0120669, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807295

RESUMO

Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the wildtype plants. This systematic analysis demonstrated that PsnSuSy2 plays an important role in cleaving sucrose coupled with cellulose biosynthesis in wood tissue.


Assuntos
Glucosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Agrobacterium/genética , Biomassa , Parede Celular/fisiologia , Celulose/biossíntese , Clorofila/metabolismo , Clonagem Molecular , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glucosiltransferases/classificação , Glucosiltransferases/genética , Lignina/biossíntese , Microscopia Eletrônica de Varredura , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Populus/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Nicotiana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA