Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cytometry A ; 105(5): 323-331, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420869

RESUMO

Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.


Assuntos
Lisossomos , Lisossomos/metabolismo , Animais , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/diagnóstico , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Mucopolissacaridose III/genética , Imageamento Quantitativo de Fase
2.
Cytometry A ; 103(3): 251-259, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36028475

RESUMO

Live cells act as biological lenses and can be employed as real-world optical components in bio-hybrid systems. Imaging at nanoscale, optical tweezers, lithography and also photonic waveguiding are some of the already proven functionalities, boosted by the advantage that cells are fully biocompatible for intra-body applications. So far, various cell types have been studied for this purpose, such as red blood cells, bacterial cells, stem cells and yeast cells. White Blood Cells (WBCs) play a very important role in the regulation of the human body activities and are usually monitored for assessing its health. WBCs can be considered bio-lenses but, to the best of our knowledge, characterization of their optical properties have not been investigated yet. Here, we report for the first time an accurate study of two model classes of WBCs (i.e., monocytes and lymphocytes) by means of a digital holographic microscope coupled with a microfluidic system, assuming WBCs bio-lens characteristics. Thus, quantitative phase maps for many WBCs have been retrieved in flow-cytometry (FC) by achieving a significant statistical analysis to prove the enhancement in differentiation among sphere-like bio-lenses according to their sizes (i.e., diameter d) exploiting intensity parameters of the modulated light in proximity of the cell optical axis. We show that the measure of the low intensity area (S: I z < I th z ) in a fixed plane, is a feasible parameter for cell clustering, while achieving robustness against experimental misalignments and allowing to adjust the measurement sensitivity in post-processing. 2D scatterplots of the identified parameters (d-S) show better differentiation respect to the 1D case. The results show that the optical focusing properties of WBCs allow the clustering of the two populations by means of a mere morphological analysis, thus leading to the new concept of cell-optical-fingerprint avoiding fluorescent dyes. This perspective can open new routes in biomedical sciences, such as the chance to find optical-biomarkers at single cell level for label-free diagnosis.


Assuntos
Holografia , Microscopia , Humanos , Microscopia/métodos , Monócitos , Holografia/métodos , Óptica e Fotônica , Linfócitos
3.
Appl Opt ; 62(10): D104-D118, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132775

RESUMO

Microplastic (MP) pollution is seriously threatening the environmental health of the world, which has accelerated the development of new identification and characterization methods. Digital holography (DH) is one of the emerging tools to detect MPs in a high-throughput flow. Here, we review advances in MP screening by DH. We examine the problem from both the hardware and software viewpoints. Automatic analysis based on smart DH processing is reported by highlighting the role played by artificial intelligence for classification and regression tasks. In this framework, the continuous development and availability in recent years of field-portable holographic flow cytometers for water monitoring also is discussed.

4.
Appl Opt ; 61(5): B331-B338, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35201156

RESUMO

A study on locomotion in a 3D environment of Tetraselmis microalgae by digital holographic microscopy is reported. In particular, a fast and semiautomatic criterion is revealed for tracking and analyzing the swimming path of a microalga (i.e., Tetraselmis species) in a 3D volume. Digital holography (DH) in a microscope off-axis configuration is exploited as a useful method to enable fast autofocusing and recognition of objects in the field of view, thus coupling DH with appropriate numerical algorithms. Through the proposed method we measure, simultaneously, the tri-dimensional paths followed by the flagellate microorganism and the full set of the kinematic parameters that describe the swimming behavior of the analyzed microorganisms by means of a polynomial fitting and segmentation. Furthermore, the method is capable to furnish the accurate morphology of the microorganisms at any instant of time along its 3D trajectory. This work launches a promising trend having as the main objective the combined use of DH and motility microorganism analysis as a label-free and non-invasive environmental monitoring tool, employable also for in situ measurements. Finally, we show that the locomotion can be visualized intriguingly by different modalities to furnish marine biologists with a clear 3D representation of all the parameters of the kinematic set in order to better understand the behavior of the microorganism under investigation.


Assuntos
Holografia , Microalgas , Algoritmos , Fenômenos Biomecânicos , Holografia/métodos , Microscopia/métodos
5.
Nano Lett ; 21(14): 5958-5966, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34232045

RESUMO

Interaction of nanoparticles (NPs) with cells is of fundamental importance in biology and biomedical sciences. NPs can be taken up by cells, thus interacting with their intracellular elements, modifying the life cycle pathways, and possibly inducing death. Therefore, there is a great interest in understanding and visualizing the process of cellular uptake itself or even secondary effects, for example, toxicity. Nowadays, no method is reported yet in which 3D imaging of NPs distribution can be achieved for suspended cells in flow-cytometry. Here we show that, by means of label-free tomographic flow-cytometry, it is possible to obtain full 3D quantitative spatial distribution of nanographene oxide (nGO) inside each single flowing cell. This can allow the setting of a class of biomarkers that characterize the 3D spatial intracellular deployment of nGO or other NPs clusters, thus opening the route for quantitative descriptions to discover new insights in the realm of NP-cell interactions.


Assuntos
Grafite , Nanopartículas , Citometria de Fluxo , Óxidos
6.
Sensors (Basel) ; 20(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171757

RESUMO

Diatoms are among the dominant phytoplankters in marine and freshwater habitats, and important biomarkers of water quality, making their identification and classification one of the current challenges for environmental monitoring. To date, taxonomy of the species populating a water column is still conducted by marine biologists on the basis of their own experience. On the other hand, deep learning is recognized as the elective technique for solving image classification problems. However, a large amount of training data is usually needed, thus requiring the synthetic enlargement of the dataset through data augmentation. In the case of microalgae, the large variety of species that populate the marine environments makes it arduous to perform an exhaustive training that considers all the possible classes. However, commercial test slides containing one diatom element per class fixed in between two glasses are available on the market. These are usually prepared by expert diatomists for taxonomy purposes, thus constituting libraries of the populations that can be found in oceans. Here we show that such test slides are very useful for training accurate deep Convolutional Neural Networks (CNNs). We demonstrate the successful classification of diatoms based on a proper CNNs ensemble and a fully augmented dataset, i.e., creation starting from one single image per class available from a commercial glass slide containing 50 fixed species in a dry setting. This approach avoids the time-consuming steps of water sampling and labeling by skilled marine biologists. To accomplish this goal, we exploit the holographic imaging modality, which permits the accessing of a quantitative phase-contrast maps and a posteriori flexible refocusing due to its intrinsic 3D imaging capability. The network model is then validated by using holographic recordings of live diatoms imaged in water samples i.e., in their natural wet environmental condition.


Assuntos
Diatomáceas/classificação , Holografia , Aprendizado de Máquina , Microscopia , Redes Neurais de Computação
7.
J Opt Soc Am A Opt Image Sci Vis ; 36(2): A59-A66, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874091

RESUMO

This paper presents a comparative study of multi-look approaches for de-noising phase maps from digital holographic interferometry. A database of 160 simulated phase fringe patterns with eight different phase fringe patterns with fringe diversity was computed. For each fringe pattern, 20 realistic noise realizations are generated in order to simulate a multi-look process with 20 inputs. A set of 22 de-noising algorithms was selected and processed for each simulation. Three approaches for multi-look processing are evaluated. Quantitative appraisal is obtained using two metrics. The results show good agreement for algorithm rankings obtained with both metrics. One singular and highly practical result of the study is that a multi-look approach with average looks before noise processing performs better than averaging computed with all de-noised looks. The results also demonstrate that the two-dimensional windowed Fourier transform filtering exhibits the best performance in all cases and that the block-matching 3D (BM3D) algorithm is second in the ranking.

8.
Appl Opt ; 58(27): 7416-7423, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31674390

RESUMO

The intracellular dynamics of onion epidermal cells during the dehydration process is observed by holographic microscopy. Both the nucleus and cytoplasm are accurately revealed by quantitative phase imaging while dehydration takes place. Indeed, we notice that the contrast of phase images increases with the decrease in cellular water content. We foresee that such a dehydrating process can be effective for improving phase contrast, thus permitting better imaging of plant cells with the scope of learning more about cellular dynamics and related phenomena. Exploiting this concept, we observe intracellular cytoplasmic circulation and transport of biological material.


Assuntos
Citoplasma/fisiologia , Holografia/métodos , Microscopia de Contraste de Fase/métodos , Cebolas/citologia , Células Vegetais/fisiologia , Água/fisiologia , Transporte Biológico/fisiologia , Desidratação , Epiderme Vegetal/fisiologia
9.
Anal Chem ; 90(12): 7495-7501, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29792684

RESUMO

The gold-standard methods for anemia diagnosis are complete blood counts and peripheral-smear observations. However, these do not allow for a complete differential diagnosis as that requires biochemical assays, which are label-dependent techniques. On the other hand, recent studies focus on label-free quantitative phase imaging (QPI) of blood samples to investigate blood diseases by using video-based morphological methods. However, when sick cells are very similar to healthy ones in terms of morphometric features, identification of a blood disease becomes challenging even with QPI. Here, we introduce a label-free optical marker (LOM) to detect red-blood-cell (RBC) phenotypes, demonstrating that a single set of all-optical parameters can clearly identify a signature directly related to an erythrocyte disease through modeling each RBC as a biological lens. We tested this novel biophotonic analysis by proving that several inherited anemias, such as iron-deficiency anemia, thalassemia, hereditary spherocytosis, and congenital dyserythropoietic anemia, can be identified and sorted, thus opening a novel route for blood diagnosis on a completely different concept based on LOMs.


Assuntos
Anemia/patologia , Eritrócitos/patologia , Imagem Óptica , Biomarcadores/sangue , Humanos , Fenótipo
10.
Opt Lett ; 41(22): 5226-5229, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842099

RESUMO

Long-IR wavelength is the best option for capturing digital holograms of large-size, real-world objects. However, the coherent noise level in a long-IR hologram is by far larger than that of a visible wavelength recording, thus resulting in a poor quality of both numerical and optical reconstructions. In this Letter, we show how such coherent noise can be efficiently suppressed by employing an optical scanning multi-look approach, in combination with 3D block matching numerical filtering. Results demonstrate the possibility to obtain near noise-free numerical reconstructions of IR digital holograms of large-size objects, while preserving resolution. We applied this method to the holograms of a rotating statuette. It will be shown that a remarkable contrast enhancement is achievable along with the recovery of object details that otherwise would be lost because of large speckle grains intrinsically due to the source coherence.

11.
Opt Express ; 22(21): 25768-75, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401610

RESUMO

In digital holography (DH) a mixture of speckle and incoherent additive noise, which appears in numerical as well as in optical reconstruction, typically degrades the information of the object wavefront. Several methods have been proposed in order to suppress the noise contributions during recording or even during the reconstruction steps. Many of them are based on the incoherent combination of multiple holographic reconstructions achieving remarkable improvement, but only in the numerical reconstruction i.e. visualization on a pc monitor. So far, it has not been shown the direct synthesis of a digital hologram which provides the denoised optical reconstruction. Here, we propose a new effective method for encoding in a single complex wavefront the contribution of multiple incoherent reconstructions, thus allowing to obtain a single synthetic digital hologram that show significant speckle-reduction when optically projected by a Spatial Light Modulator (SLM).


Assuntos
Artefatos , Holografia/métodos , Fenômenos Ópticos , Astronautas , Processamento de Imagem Assistida por Computador
12.
Curr Opin Biotechnol ; 85: 103054, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142647

RESUMO

Despite remarkable progresses in quantitative phase imaging (QPI) microscopes, their wide acceptance is limited due to the lack of specificity compared with the well-established fluorescence microscopy. In fact, the absence of fluorescent tag prevents to identify subcellular structures in single cells, making challenging the interpretation of label-free 2D and 3D phase-contrast data. Great effort has been made by many groups worldwide to address and overcome such limitation. Different computational methods have been proposed and many more are currently under investigation to achieve label-free microscopic imaging at single-cell level to recognize and quantify different subcellular compartments. This route promises to bridge the gap between QPI and FM for real-world applications.


Assuntos
Microscopia , Imageamento Quantitativo de Fase , Microscopia/métodos , Microscopia de Contraste de Fase/métodos
13.
Sci Rep ; 14(1): 8418, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600062

RESUMO

Accumulation of bioavailable heavy metals in aquatic environment poses a serious threat to marine communities and human health due to possible trophic transfers through the food chain of toxic, non-degradable, exogenous pollutants. Copper (Cu) is one of the most spread heavy metals in water, and can severely affect primary producers at high doses. Here we show a novel imaging test to assay the dose-dependent effects of Cu on live microalgae identifying stress conditions when they are still capable of sustaining a positive growth. The method relies on Fourier Ptychographic Microscopy (FPM), capable to image large field of view in label-free phase-contrast mode attaining submicron lateral resolution. We uniquely combine FPM with a new multi-scale analysis method based on fractal geometry. The system is able to provide ensemble measurements of thousands of diatoms in the liquid sample simultaneously, while ensuring at same time single-cell imaging and analysis for each diatom. Through new image descriptors, we demonstrate that fractal analysis is suitable for handling the complexity and informative power of such multiscale FPM modality. We successfully tested this new approach by measuring how different concentrations of Cu impact on Skeletonema pseudocostatum diatom populations isolated from the Sarno River mouth.


Assuntos
Diatomáceas , Metais Pesados , Humanos , Cobre/farmacologia , Microscopia , Fractais , Metais Pesados/farmacologia
14.
ACS Appl Mater Interfaces ; 16(15): 19453-19462, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38576414

RESUMO

Inkjet printing of liquid crystal (LC) microlens arrays is particularly appealing for the development of switchable 2D/3D organic light-emitting diode (OLED) displays, as the printing process ensures that the lenses can be deposited directly and on-demand onto the pixelated OLED layer without the need for additional steps, thus simplifying fabrication complexity. Even if different fabrication technologies have been employed and good results in LC direct printing have already been achieved, all the systems used require costly equipment and heated nozzles to reduce the LC solution's viscosity. Here, we present the direct printing of a nematic LC (NLC) lens by a Drop-on-Demand (DoD) inkjet printing by a pyro-electrohydrodynamic effect for the first time. The method works at ambient temperature and avoids dispensing nozzles, thus offering a noncontact manipulation approach of liquid with high resolution and good repeatability on different kinds of substrates. NLC microlenses are printed on different substrates and fully characterized. Polarization properties are evaluated for various samples, i.e., NLC lenses on unaligned and indium-tin oxide (ITO) aligned. Moreover, an in-depth characterization of the NLC lenses is reported by polarized optical microscopy and by analyzing the birefringence in digital holographic microscopy.

15.
Biomed Opt Express ; 15(4): 2202-2223, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633099

RESUMO

Probiotic bacteria are widely used in pharmaceutics to offer health benefits. Microencapsulation is used to deliver probiotics into the human body. Capsules in the stomach have to keep bacteria constrained until release occurs in the intestine. Once outside, bacteria must maintain enough motility to reach the intestine walls. Here, we develop a platform based on two label-free optical modules for rapidly screening and ranking probiotic candidates in the laboratory. Bio-speckle dynamics assay tests the microencapsulation effectiveness by simulating the gastrointestinal transit. Then, a digital holographic microscope 3D-tracks their motility profiles at a single element level to rank the strains.

16.
Comput Struct Biotechnol J ; 24: 225-236, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572166

RESUMO

Breast cancer is one of the most spread and monitored pathologies in high-income countries. After breast biopsy, histological tissue is stored in paraffin, sectioned and mounted. Conventional inspection of tissue slides under benchtop light microscopes involves paraffin removal and staining, typically with H&E. Then, expert pathologists are called to judge the stained slides. However, paraffin removal and staining are operator-dependent, time and resources consuming processes that can generate ambiguities due to non-uniform staining. Here we propose a novel method that can work directly on paraffined stain-free slides. We use Fourier Ptychography as a quantitative phase-contrast microscopy method, which allows accessing a very wide field of view (i.e., mm2) in one single image while guaranteeing high lateral resolution (i.e., 0.5 µm). This imaging method is multi-scale, since it enables looking at the big picture, i.e. the complex tissue structure and connections, with the possibility to zoom-in up to the single-cell level. To handle this informative image content, we introduce elements of fractal geometry as multi-scale analysis method. We show the effectiveness of fractal features in describing and classifying fibroadenoma and breast cancer tissue slides from ten patients with very high accuracy. We reach 94.0 ± 4.2% test accuracy in classifying single images. Above all, we show that combining the decisions of the single images, each patient's slide can be classified with no error. Besides, fractal geometry returns a guide map to help pathologist to judge the different tissue portions based on the likelihood these can be associated to a breast cancer or fibroadenoma biomarker. The proposed automatic method could significantly simplify the steps of tissue analysis and make it independent from the sample preparation, the skills of the lab operator and the pathologist.

17.
Lab Chip ; 24(4): 924-932, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38264771

RESUMO

Nowadays, label-free imaging flow cytometry at the single-cell level is considered the stepforward lab-on-a-chip technology to address challenges in clinical diagnostics, biology, life sciences and healthcare. In this framework, digital holography in microscopy promises to be a powerful imaging modality thanks to its multi-refocusing and label-free quantitative phase imaging capabilities, along with the encoding of the highest information content within the imaged samples. Moreover, the recent achievements of new data analysis tools for cell classification based on deep/machine learning, combined with holographic imaging, are urging these systems toward the effective implementation of point of care devices. However, the generalization capabilities of learning-based models may be limited from biases caused by data obtained from other holographic imaging settings and/or different processing approaches. In this paper, we propose a combination of a Mask R-CNN to detect the cells, a convolutional auto-encoder, used to the image feature extraction and operating on unlabelled data, thus overcoming the bias due to data coming from different experimental settings, and a feedforward neural network for single cell classification, that operates on the above extracted features. We demonstrate the proposed approach in the challenging classification task related to the identification of drug-resistant endometrial cancer cells.


Assuntos
Algoritmos , Holografia , Citometria de Fluxo , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Holografia/métodos
18.
Lab Chip ; 23(9): 2316-2326, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074006

RESUMO

Space-time digital holography (STDH) maps holograms in a hybrid space-time domain to achieve extended field of view, resolution enhanced, quantitative phase-contrast microscopy and velocimetry of flowing objects in a label-free modality. In STDH, area sensors can be replaced by compact and faster linear sensor arrays to augment the imaging throughput and to compress data from a microfluidic video sequence into one single hybrid hologram. However, in order to ensure proper imaging, the velocity of the objects in microfluidic channels has to be well-matched to the acquisition frame rate, which is the major constraint of the method. Also, imaging all the flowing samples in focus at the same time, while avoiding hydrodynamic focusing devices, is a highly desirable goal. Here we demonstrate a novel processing pipeline that addresses non-ideal flow conditions and is capable of returning the correct and extended focus phase contrast mapping of an entire microfluidic experiment in a single image. We apply this novel processing strategy to recover phase imaging of flowing HeLa cells in a lab-on-a-chip platform even when severely undersampled due to too fast flow while ensuring that all cells are in focus.

19.
Front Physiol ; 14: 1120099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860516

RESUMO

Kidney microscopy is a mainstay in studying the morphological structure, physiology and pathology of kidney tissues, as histology provides important results for a reliable diagnosis. A microscopy modality providing at same time high-resolution images and a wide field of view could be very useful for analyzing the whole architecture and the functioning of the renal tissue. Recently, Fourier Ptychography (FP) has been proofed to yield images of biology samples such as tissues and in vitro cells while providing high resolution and large field of view, thus making it a unique and attractive opportunity for histopathology. Moreover, FP offers tissue imaging with high contrast assuring visualization of small desirable features, although with a stain-free mode that avoids any chemical process in histopathology. Here we report an experimental measuring campaign for creating the first comprehensive and extensive collection of images of kidney tissues captured by this FP microscope. We show that FP microscopy unlocks a new opportunity for the physicians to observe and judge renal tissue slides through the novel FP quantitative phase-contrast microscopy. Phase-contrast images of kidney tissue are analyzed by comparing them with the corresponding renal images taken under a conventional bright-field microscope both for stained and unstained tissue samples of different thicknesses. In depth discussion on the advantages and limitations of this new stain-free microscopy modality is reported, showing its usefulness over the classical light microscopy and opening a potential route for using FP in clinical practice for histopathology of kidney.

20.
Small Methods ; 7(11): e2300447, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37670547

RESUMO

In-flow phase-contrast tomography provides a 3D refractive index of label-free cells in cytometry systems. Its major limitation, as with any quantitative phase imaging approach, is the lack of specificity compared to fluorescence microscopy, thus restraining its huge potentialities in single-cell analysis and diagnostics. Remarkable results in introducing specificity are obtained through artificial intelligence (AI), but only for adherent cells. However, accessing the 3D fluorescence ground truth and obtaining accurate voxel-level co-registration of image pairs for AI training is not viable for high-throughput cytometry. The recent statistical inference approach is a significant step forward for label-free specificity but remains limited to cells' nuclei. Here, a generalized computational strategy based on a self-consistent statistical inference to achieve intracellular multi-specificity is shown. Various subcellular compartments (i.e., nuclei, cytoplasmic vacuoles, the peri-vacuolar membrane area, cytoplasm, vacuole-nucleus contact site) can be identified and characterized quantitatively at different phases of the cells life cycle by using yeast cells as a biological model. Moreover, for the first time, virtual reality is introduced for handling the information content of multi-specificity in single cells. Full fruition is proofed for exploring and interacting with 3D quantitative biophysical parameters of the identified compartments on demand, thus opening the route to a metaverse for 3D microscopy.


Assuntos
Inteligência Artificial , Saccharomyces cerevisiae , Citometria de Fluxo/métodos , Citoplasma , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA