Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Curr Microbiol ; 79(2): 48, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982246

RESUMO

This study aimed to characterize the whole genome of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) isolated from an oropharyngeal swab specimen of a Pashtun Pakistani patient using next-generation sequencing. Upon comparing the SARS-CoV2 genome to the reference genome, a total of 10 genetic variants were identified. Among the 10 genetic variants, 1 missense mutation (c.1139A > G, p.Lys292Glu) in the Open Reading Frame 1ab (ORF1ab) positioned at 112 in the non-structural protein 2 (NSP2) was found to be unique. Phylogenetic analysis (n = 84) revealed that the current SARS-CoV2 genome was closely clustered with 8 Pakistani strains belonging to Punjab, Federal Capital, Azad Jammu and Kashmir (AJK), and Khyber Pakhtunkhwa (KP). In addition, the current SARS-CoV2 genome was very similar to the genome of SARS-CoV2 reported from Guam, Taiwan, India, the USA, and France. Overall, this study reports a slight mismatch in the SARS-CoV2 genome, indicating the presence of a single unique missense mutation. However, phylogenetic analysis revealed that the current SARS-CoV2 genome was closely clustered with 8 other Pakistani strains.


Assuntos
COVID-19 , RNA Viral , Genoma Viral , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Paquistão , Filogenia , SARS-CoV-2
2.
Reprod Health ; 18(1): 163, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321043

RESUMO

BACKGROUND: Preeclampsia (PE) is a complex pregnancy hypertensive disorder with multifaceted etiology. The endothelial nitric oxide synthase (eNOS) gene and nitric oxide (NO) levels has been reported to be associated with PE predisposition in various populations. Therefore, present study was designed to investigate the role of NO levels and eNOS gene variants in preeclamptic women in Pakistan. METHODS: A total of 600 women were evaluated, 188 of PE with mild features, 112 of PE with severe features and 300 normotensive pregnant women. NO levels were detected by Greiss reaction method and genotyping following sequencing was conducted for eNOS gene variants. Further insilico studies were performed to get insights into the structural and functional impact of identifies mutation on eNOS protein as well as on protein regulation. RESULTS: Reduced concentrations of NO were reported in all PE groups (p < 0.05) as compared to controls. The frequency of c.894 T (p.298Asp) and g.-786C alleles were significantly associated with PE. In addition, novel homozygous variant g.2051G > A was also significantly associated with PE when compared to normotensive women. Dynamic simulation studies revealed that Glu298Asp mutation destabilize the protein molecule and decrease the overall stability of eNOS protein. Molecular docking analysis of mutant promoter with transcription factors STAT3 and STAT6 proposed changes in protein regulation upon these reported mutations in upstream region of the gene. CONCLUSION: Considering the results of current study, the functional alterations induced by these variants may influence the bioavailability of NO and represents a genetic risk factor for increased susceptibility to PE. However, large studies or meta-analysis are necessary to validate these findings.


Preeclampsia (PE) is a complex pregnancy hypertensive disorder with multifaceted etiology characterized by increased hypertension and proteinuria after 20 weeks of gestation. The present study was directed to determine the role of eNOS in susceptibility to PE and the association of c.894G > T (p.(Glu298Asp), intron 4b/4a, g.-786 T > C and other possible variants of eNOS gene with preeclampsia in Pakistani population. Computational analysis of identified variants in the coding and non-coding region of the eNOS gene was also conducted to determine the change in gene regulation and further protein stability. A total of 600 women were evaluated, 188 with mild and 112 with PE with severe features PE with 300 normotensive pregnant women. NO levels and genotyping following sequencing was conducted for eNOS gene variants. Further insilico studies were performed to get insights into the structural and functional impact of identifies mutation on eNOS protein as well as on protein regulation. Data from the current study suggest that there might be other risk variants of the eNOS gene (g.2051G > A and g.1861G > A) and lower levels of serum NO that confers in an increased risk of PE. The detailed computational investigation further confirmed the deformities and changes in protein flexibility upon Glu298Asp. These structural alterations might be associated with preeclampsia. Variants in the promoter region of the eNOS gene further validate the change in gene regulation for the onset of disease. Identification of key structural and functional features in eNOS protein and gene regulatory region might be used for designing specific drugs for therapeutic purpose.


Assuntos
Óxido Nítrico Sintase Tipo III , Pré-Eclâmpsia , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo III/genética , Paquistão , Pré-Eclâmpsia/genética , Gravidez
3.
BMC Med Genet ; 20(1): 171, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699039

RESUMO

BACKGROUND: Colorectal cancer (CRC) is categorized by alteration of vital pathways such as ß-catenin (CTNNB1) mutations, WNT signaling activation, tumor protein 53 (TP53) inactivation, BRAF, Adenomatous polyposis coli (APC) inactivation, KRAS, dysregulation of epithelial to mesenchymal transition (EMT) genes, MYC amplification, etc. In the present study an attempt was made to screen CTNNB1 gene in colorectal cancer samples from Pakistani population and investigated the association of CTNNB1 gene mutations in the development of colorectal cancer. METHODS: 200 colorectal tumors approximately of male and female patients with sporadic or familial colorectal tumors and normal tissues were included. DNA was extracted and amplified through polymerase chain reaction (PCR) and subjected to exome sequence analysis. Immunohistochemistry was done to study protein expression. Molecular dynamic (MD) simulations of CTNNB1WT and mutant S33F and T41A were performed to evaluate the stability, folding, conformational changes and dynamic behaviors of CTNNB1 protein. RESULTS: Sequence analysis revealed two activating mutations (S33F and T41A) in exon 3 of CTNNB1 gene involving the transition of C.T and A.G at amino acid position 33 and 41 respectively (p.C33T and p.A41G). Immuno-histochemical staining showed the accumulation of ß-catenin protein both in cytoplasm as well as in the nuclei of cancer cells when compared with normal tissue. Further molecular modeling, docking and simulation approaches revealed significant conformational changes in the N-terminus region of normal to mutant CTNNB1 gene critical for binding with Glycogen synthase kinase 3-B (GSK3) and transducin containing protein1 (TrCp1). CONCLUSION: Present study on Pakistani population revealed an association of two non-synonymous polymorphisms in the CTNNB1 gene with colorectal cancer. These genetic variants led to the accumulation of the CTNNB1, a hallmark of tumor development. Also, analysis of structure to function alterations in CTNNB1 gene is crucial in understanding downstream biological events.


Assuntos
Neoplasias Colorretais/genética , Mutação , Polimorfismo Genético , beta Catenina/genética , Adulto , Cristalografia por Raios X , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Paquistão , Conformação Proteica , beta Catenina/química
4.
J Theor Biol ; 388: 72-84, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26493360

RESUMO

Polo like kinase (Plk1) is a master regulator of cell cycle and considered as next generation antimitotic target in human. As Plk1 predominantly expresses in the dividing cells with a much higher expression in cancerous cells, it serves as a discriminative target for cancer therapeutics. Here we implied a novel and promising integrative strategy to identify "bifunctional" Plk1 inhibitors that compete simultaneously with ATP and substrate for their binding sites. We integrated structure-based virtual screening (SBVS) and molecular dynamics simulations with emphasis on unique structural properties of Plk1. Through screening of 20,000 compounds, nearly ~2000 hits were enriched and subjected to SBVS against ATP and substrate binding sites of Plk1. Subsequently, on the basis of their binding abilities to Plk1 kinase and polo box domains, filtration of candidate hits resulted in the isolation of 26 compounds. By exclusion of close analogs or isomers, 10 unique compounds were selected for detailed study. A representative compound was subjected to molecular dynamics simulation assay to have deep structural insights and to gauge critical structural crunch for inhibitor binding against kinase and polo box domains. Our integrative approach may complement high-throughput screening and identify bifunctional Plk1 inhibitors that may contribute in selective targeting of Plk1 to elicit desired biological process.


Assuntos
Proteínas de Ciclo Celular/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ligação Competitiva , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Humanos , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Especificidade por Substrato , Quinase 1 Polo-Like
5.
Gene ; 894: 147986, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956964

RESUMO

BACKGROUND: Oculocutaneous albinism (OCA) is a group of skin depigmentation disorders. Clinical presentation of OCA includes defects in melanocyte differentiation, melanin biosynthesis, and melanosome maturation and transport. OBJECTIVES: A molecular diagnostics study of families presenting oculocutaneous albinism. METHODS: In this study, 17 consanguineous OCA families consisting of 93 patients were investigated. Whole Exome Sequencing (WES) of the index patient in each family were performed. Short listed variants of WES were Sanger validated for Mendelian segregation in obligate carriers and other available family members. Variant prioritization and pathogenicity were classified as per the criteria of American College Medical Genetics and Genomics (ACMG). Comparative computational modelling was performed to predict the potential damaging effect of the altered proteins. RESULTS: 15 pathogenic variations: c.132 T > A, c.346C > T, c.488C > G, c.1037G > A in TYR, c.1211C > T, c.1441G > A, c.1706_1707insT, c.2020C > G, c.2402G > C, c.2430del, in OCA2, c.1067G > A in TYRP1 and c.451C > T, c.515G > T, c.766C > T, c.917G > A in MC1R genes were identified. Three variants in OCA2 gene were characterized: c.1706_1707insT, c.2430del, and c.2402G > C, all of which were not reported before in OCA families. CONCLUSION: A few studies focusing on mutation screening of OCA patients have been reported before; however, this study has uniquely presents the Pakhtun ethnic population residing on the North-Western boarder. It explains that TYR, OCA2, TYRP1, and MC1R variations lead to non-syndromic OCA phenotype The overlapping phenotypes of OCA can precisely be diagnosed for its molecular pathogenicity using WES. This study recommends WES as a first-line molecular diagnostic tool, and provides a basis for developing customized genetic tests i.e. pre-marital screening to reduce the disease burden in the future generations.


Assuntos
Albinismo Oculocutâneo , Humanos , Sequenciamento do Exoma , Albinismo Oculocutâneo/genética , Albinismo Oculocutâneo/diagnóstico , Testes Genéticos , Mutação , Proteínas de Membrana Transportadoras/genética , Glicoproteínas de Membrana/genética , Oxirredutases/genética
6.
An Bras Dermatol ; 98(5): 580-586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37183149

RESUMO

BACKGROUND: Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare hereditary disorder characterized by defects in teeth, hair, and nails in association with a fusion of the digits. Genetically, the disease phenotypes are caused by homozygous and compound heterozygous variants in NECTIN4 gene. OBJECTIVE: The main objective of the study was to identify the pathogenic sequence variant(s) for family screening and identification of carriers. METHODS: In the present study, the authors have investigated a large consanguineous family of Pakistani origin segregating autosomal recessive EDSS1. All the coding exons of the NECTIN4 gene were directly sequenced using gene-specific primers. RESULTS: The affected individuals presented the classical EDSS1 clinical features including sparse hair, hypoplastic nails with thick flat discolored nail plates, peg-shaped, conical, and widely spaced teeth with enamel hypoplasia, proximal cutaneous syndactyly of fingers and toes. Sequence analysis of the coding region of the NECTIN4 identified a novel nonsense variant [c.163C>T; p.(Arg55*)] in exon-2 of the gene. Computational analysis of protein structure revealed that the variant induced premature termination at Arg55 located in Ig-like V-loop region leading to loss of Ig-C2 type domains and transmembrane region, and most likely Nectin-4 function will be lost. STUDY LIMITATION: Gene expression studies are absent that would have strengthened the findings of computational analysis. CONCLUSION: The present study expanded the phenotypic and mutation spectrum of the NECTIN4 gene. Further, the study would assist in carrier testing and prenatal diagnosis of the affected families.


Assuntos
Displasia Ectodérmica , Sindactilia , Humanos , Displasia Ectodérmica/genética , Códon sem Sentido/genética , Paquistão , Sindactilia/genética , Sindactilia/complicações , Mutação , Dedos , Moléculas de Adesão Celular/genética
7.
J Neuroimmune Pharmacol ; 18(1-2): 183-194, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37261605

RESUMO

Alzheimer's disease (AD) is globally recognized as a prominent cause of dementia for which efficient treatment is still lacking. New candidate compounds that are biologically potent are regularly tested. We, therefore, hypothesized to study the neuroprotective potential of Zinc Ortho Methyl Carbonodithioate (thereafter called ZOMEC) against Scopolamine (SCOP) induced Alzheimer's disease (AD) model using adult albino mice. We post-administered ZOMEC (30 mg/Kg) into two group of mice for three weeks on daily basis that received either 0.9% saline or SCOP (1 mg/Kg) for initial two weeks. The other two groups of mice received 0.9% saline and SCOP (1 mg/Kg) respectively. After memory related behavioral analysis the brain homogenates were evaluated for the antioxidant potential of ZOMEC and multiple protein markers were examined through western blotting. Our results provide enough evidences that ZOMEC decrease oxidative stress by increasing catalase (CAT) and glutathione S transferase (GST) and decreasing the lipid peroxidation (LPO). The SIRT1 and pre and post synaptic marker proteins, synaptophysin (SYP) as well as post synaptic density protein (PSD-95) expression were also enhanced upon ZOMEC treatment. Furthermore, memory impairment was rescued and ZOMEC appreciably abrogated the Aß accumulation, BACE1 expression C and the p-JNK pathway. The inflammatory protein markers, NF-kß and IL-1ß in ZOMEC treated mice were also comparable with control group. The predicted interaction of ZOMEC with SIRT1 was further confirmed by molecular docking. These findings thus provide initial reports on efficacy of ZOMEC in SCOP induced AD model.


Assuntos
Doença de Alzheimer , Escopolamina , Camundongos , Animais , Escopolamina/toxicidade , Escopolamina/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Sistema de Sinalização das MAP Quinases , Zinco/metabolismo , Zinco/uso terapêutico , Sirtuína 1/metabolismo , Simulação de Acoplamento Molecular , Solução Salina/metabolismo , Solução Salina/uso terapêutico , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Sinapses
8.
Genes (Basel) ; 14(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36833437

RESUMO

(1) Background: Dyggve-Melchior-Clausen Syndrome is a skeletal dysplasia caused by a defect in the DYM gene (OMIM number 607461). Pathogenic variants in the gene have been reported to cause Dyggve-Melchior-Clausen (DMC; OMIM 223800) dysplasia and Smith-McCort (SMC; OMIM 607326) dysplasia. (2) Methods: In the present study, large consanguineous families with five affected individuals with osteochondrodysplasia phenotypes were recruited. The family members were analyzed by polymerase chain reaction for homozygosity mapping using highly polymorphic microsatellite markers. Subsequent to linkage analysis, the coding exons and exon intron border of the DYM gene were amplified. The amplified products were then sent for Sanger sequencing. The structural effect of the pathogenic variant was analyzed by different bioinformatics tools. (3) Results: Homozygosity mapping revealed a 9 Mb homozygous region on chromosome 18q21.1 harboring DYM shared by all available affected individuals. Sanger sequencing of the coding exons and exon intron borders of the DYM gene revealed a novel homozygous nonsense variant [DYM (NM_017653.6):c.1205T>A, p.(Leu402Ter)] in affected individuals. All the available unaffected individuals were either heterozygous or wild type for the identified variant. The identified mutation results in loss of protein stability and weekend interactions with other proteins making them pathogenic (4) Conclusions: This is the second nonsense mutation reported in a Pakistani population causing DMC. The study presented would be helpful in prenatal screening, genetic counseling, and carrier testing of other members in the Pakistani community.


Assuntos
Nanismo , Deficiência Intelectual , Osteocondrodisplasias , Humanos , Osteocondrodisplasias/genética , Peptídeos e Proteínas de Sinalização Intracelular , Nanismo/genética , Deficiência Intelectual/genética
9.
Eur J Med Genet ; 65(10): 104599, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067927

RESUMO

Polydactyly is a human inherited disorder caused by to anomalies in the genes involved in autopod development. The disorder segregates in both autosomal recessive and autosomal dominant form. Up till now, eleven genes causing non-syndromic polydactyly, have been identified. This includes ZNF141, GLI3, ZRS in LMBR1, MIPOL1, PITX1, IQCE, GLI1, FMA92A1, KIAA0825, STKLD1, and DACH1. In the present study, we have investigated a large consanguineous family of Pakistani origin segregating polydactyly in autosomal recessive pattern. Clinical examination of affected individuals revealed a non-syndromic form of the disorder. Genetic study based on homozygosity mapping and Sanger sequencing using DNA of the normal and affected individuals found a novel homozygous missense sequence variant [NM_005269.3: c.1133C > T, p.(Ser378Leu)] in the GLI1 located on human chromosome 12q13.3. In silico analysis of the identified variant showed a significant change in the secondary structure of the mutant protein that affects its function. Findings of the present study expand the mutation spectrum of the GLI1. In addition, the study will help in prevention of the disorder through carrier testing and bringing awareness among families affected with polydactyly.


Assuntos
Polidactilia , Consanguinidade , Dedos/anormalidades , Humanos , Linhagem , Fenótipo , Polidactilia/complicações , Polidactilia/genética , Dedos do Pé/anormalidades , Proteína GLI1 em Dedos de Zinco/genética
10.
Biomed Res Int ; 2022: 8902262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193329

RESUMO

A new mechanistic approach to overcome the neurodegenerative disorders caused by oxidative stress in Alzheimer's disease (AD) is highly stressed in this article. Thus, a newly formulated drug (zinc ortho-methyl carbonodithioate (ZOMEC)) was investigated for five weeks on seven-week-old BALB/c male mice. ZOMEC 30 mg/kg was postadministered intraperitoneally during the third week of pentylenetetrazole (PTZ) injection. The brain homogenates of the mice were evaluated for their antioxidant potential for ZOMEC. The results including catalase (CAT), glutathione S transferase (GST), and lipid peroxidation (LPO) demonstrated that ZOMEC significantly reverted the oxidative stress stimulated by PTZ in the mouse brain. ZOMEC upregulated p-Akt/Nrf-2 pathways (also supported by molecular docking methods) to revoke PTZ-induced apoptotic protein markers. ZOMEC reversed PTZ-induced neuronal synapse deficits, improved oxidative stress-aided memory impairment, and inhibited the amyloidogenic pathway in mouse brains. The results suggested the potential of ZOMEC as a new, safe, and neurotherapeutic agent to cure neurodegenerative disorders by decreasing AD-like neuropathology in the animal PTZ model.


Assuntos
Doença de Alzheimer , Pentilenotetrazol , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Modelos Animais de Doenças , Glutationa Transferase/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Pentilenotetrazol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Zinco
11.
J Biomol Struct Dyn ; 40(23): 12812-12826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34519259

RESUMO

COVID-19 disease caused by the SARS-CoV-2 virus has shaken our health and wealth foundations. Although COVID-19 vaccines will become available allowing for attenuation of disease progression rates, distribution of vaccines can create other challenges and delays. Hence repurposed drugs against SARS-CoV-2 can be an attractive parallel strategy that can be integrated into routine clinical practice even in poorly-resourced countries. The present study was designed using knowledge of viral pathogenesis and pharmacodynamics of broad-spectrum antiviral agents (BSAAs). We carried out the virtual screening of BSAAs against the SARS-CoV-2 spike glycoprotein, RNA dependent RNA polymerase (RdRp), the main protease (Mpro) and the helicase enzyme of SARS-CoV-2. Imatinib (a tyrosine kinase inhibitor), Suramin (an anti-parasitic), Glycyrrhizin (an anti-inflammatory) and Bromocriptine (a dopamine agonist) showed higher binding affinity to multiple targets. Further through molecular dynamics simulation, critical conformational changes in the target protein molecules were revealed upon drug binding which illustrates the favorable binding conformations of antiviral drugs against SARS-CoV-2 target proteins. The resulting drugs from the present study in combination and in cocktails from the arsenal of existing drugs could reduce the translational distance and could offer substantial clinical benefit to decrease the burden of COVID-19 illness. This also creates a roadmap for subsequent viral diseases that emerge.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Reposicionamento de Medicamentos , Vacinas contra COVID-19 , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia
12.
Sci Rep ; 12(1): 11749, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817806

RESUMO

This study aimed to explore the mechanisms of action of a sulindac acetohydrazide derivative, N'-(4-dimethylaminobenzylidene)-2-1-(4-(methylsulfinyl) benzylidene)-5-fluoro-2-methyl-1H-inden-3-yl) acetohydrazide, against anticancer drug cisplatin induced organ damage. Using a rodent model, various markers of organ function and signaling pathways were examined and validated by molecular docking studies. The study involves five groups of animals: control, DMSO, CDDP, CDDP + DMFM, and DMFM. Biochemical enzyme activity, histopathology, tissue antioxidant, and oxidative stress markers were examined. RT-PCR and western blot analyses were conducted for the expression of inducible cyclooxygenase enzyme (COX-2), nuclear factor kappa beta (NF-κB), p65, IL-1, TNF-α, and inducible nitric oxide synthase (iNOS). Flow cytometry analysis of CD4 + TNF-α, CD4 + COX-2, and CD4 + STAT-3 cells in whole blood was performed. Structural and dynamic behavior of DMFM upon binding with receptor molecule molecular docking and dynamic simulations were performed using bioinformatics tools and software. Treatment with DMFM reversed cisplatin-induced malondialdehyde (MDA) and nitric oxide (NO) induction, whereas the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD) in the kidney, heart, liver, and brain tissues were increased. DMFM administration normalized plasma levels of biochemical enzymes. We observed a marked decline in CD4 + STAT3, TNF-α, and COX2 cell populations in whole blood after treatment with DMFM. DMFM downregulated the expression factors related to inflammation at the mRNA and protein levels, i.e., IL-1, TNF-α, iNOS, NF-κB, STAT-3, and COX-2. Dynamic simulations and in silico docking data supports the experimental findings. Our experimental and in silico results illustrated that DMFM may affect protective action against cisplatin-induced brain, heart, liver, and kidney damage via reduction of inflammation and ROS.


Assuntos
Antioxidantes , Cisplatino , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cisplatino/efeitos adversos , Cisplatino/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Hidrazinas , Inflamação/metabolismo , Interleucina-1/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Transdução de Sinais , Sulindaco , Fator de Necrose Tumoral alfa/metabolismo
13.
Protein Pept Lett ; 28(3): 340-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32875973

RESUMO

BACKGROUND: Oesophgeal adenocarcinoma (OAC) is the most frequent cause of cancer death. POLO-like kinase 1 (PLK1) is overexpressed in broad spectrum of tumors and has prognostic value in many cancers including esophageal cancer, suggesting its potential as a therapeutic target. p53, the guardian of genome is the most important tumor suppressors that represses the promoter of PLK1, whereas tumor cells with inactive p53 are arrested in mitosis due to DNA damage. PLK1 expression has been linked to the elevated p53 expression and has been shown to act as a biomarker that predicts poor prognosis in OAC. OBJECTIVES: The aim of the present study was identification of PLK1 associated phosphorylation targets in p53 mutant and p53 normal cells to explore the downstream signaling evets. METHODS: Here we develop a proof-of-concept phospho-proteomics approach to identify possible biomarkers that can be used to identify mutant p53 or wild-type p53 pathways. We treated PLK1 asynchronously followed by mass spectrometry data analysis. Protein networking and motif analysis tools were used to identify the significant clusters and potential biomarkers. RESULTS: We investigated approximately 1300 potential PLK1-dependent phosphopeptides by LCMS/ MS. In total, 2216 and 1155 high confidence phosphosites were identified in CP-A (p53+) and OE33 (p53-) cell lines owing to PLK1 inhibition. Further clustering and motif assessment uncovered many significant biomarkers with known and novel link to PLK1. CONCLUSION: Taken together, our study suggests that PLK1 may serve as a potential therapeutic target in human OAC. The data highlight the efficacy and specificity of small molecule PLK1 kinase inhibitors to identify novel signaling pathways in vivo.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Esofágicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Humanos , Quinase 1 Polo-Like
14.
Eur J Pharmacol ; 892: 173779, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33275961

RESUMO

The rapid outbreak of the COVID-19 also known as SARS-CoV2 has been declared pandemic with serious global concern. As there is no effective therapeutic against COVID-19, there is an urgent need for explicit treatment against it. The focused objective of the current study is to propose promising drug candidates against the newly identified potential therapeutic target (endonuclease, NSP15) of SARS-CoV2. NSP15 is an attractive druggable target due to its critical role in SARS-CoV2 replication and virulence in addition to interference with the host immune system. Here in the present study, we integrated the high throughput computational screening and dynamic simulation approach to identify the most promising candidate lead compound against NSP15.5-fluoro-2-oxo-1H-pyrazine-3-carboxamide (favipiravir), (3R,4R, 5R)-3,4-Bis(benzyloxy)-5-((benzyloxy) methyl) dihydrofuran-2(3H)-one) remedesivir, 1,3-thiazol-5-ylmethyl N-[(2S,3S, 5S)-3-hydroxy-5-[[(2 S)-3-methyl-2-[[methyl-[(2-propan-2-yl-1,3-thiazol-4-yl)methyl]carbamoyl]amino]butanoyl]amino]-1,6-diphenylhexan-2-yl]carbamate (ritonavir), ethyl (3R,4R, 5S)-4-acetamido-5-amino-3-pentan-3-yloxycyclohexene-1-carboxylate (oseltamivir), and (2 S)-N-[(2S,4S, 5S)-5-[[2-(2,6-dimethylphenoxy)acetyl]amino]-4-hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide (lopinavir) were chosen as a training set to generate the pharmacophore model. A dataset of ~140,000 compounds library was screened against the designed pharmacophore model and 10 unique compounds were selected that passed successfully through geometry constraints, Lipinski Rule of 5, and ADME/Tox filters along with a strong binding affinity for NSP15 binding cavity. The best fit compound was selected for dynamic simulation to have detailed structural features critical for binding with the NSP15 protein. Given our detailed integrative computational analysis, a Small molecule (3,3-Dimethyl-N-[4-(1-piperidinylcarbonyl) phenyl] butanamide) with drug-like properties and high binding affinity with the NSP15 is proposed as a most promising potential drug against COVID-19. The current computational integrative approach may complement high-throughput screening and the shortlisted small molecule may contribute to selective targeting of NSP15 to stop the replication of SARS-CoV2.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , COVID-19/metabolismo , Endorribonucleases/metabolismo , Piperidinas/farmacologia , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacocinética , Antivirais/toxicidade , Benzamidas/farmacocinética , Desenho de Fármacos , Endorribonucleases/química , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Piperidinas/farmacocinética , Proteínas não Estruturais Virais/química
15.
Front Pediatr ; 9: 727288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414147

RESUMO

Epidermolysis bullosa (EB) is a genetic skin disorder that shows heterogeneous clinical fragility. The patients develop skin blisters congenitally or in the early years of life at the dermo-epithelial junctions, including erosions, hyperkeratosis over the palms and soles. The other associated features are hypotrichosis on the scalp, absent or dystrophic nails, and dental anomalies. Molecular diagnosis through whole-exome sequencing (WES) has become one of the successful tool in clinical setups. In this study, three Pakhtun families from the Khyber Pakhtunkhwa province of Pakistan were ascertained. WES analysis of a proband in each family revealed two novel variants (COL17A1: NM_000494.4: c.4041T>G: p.Y1347* and PLEC: NM_201380.3: c.1283_1285delGCT: p.L426del) and one previously known COL17A1: NM_000494.4:c.3067C>T: p.Q1023*) variant in homozygous forms. Sanger sequencing of the identified variants confirmed that the heterozygous genotypes of the obligate carriers. The identified variants have not only increased the mutation spectrum of the COL17A1 and PLEC but also confirms their vital role in the morphogenesis of skin and its associated appendages. WES can be used as a first-line diagnostic tool in genetic testing and counselling families from Khyber Pakhtunkhwa, Pakistan.

16.
Chemosphere ; 272: 129794, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35534954

RESUMO

This study reports synthesis of Garcinia mangostana fruit pericarp (unwanted waste material) and α-mangostin mediated silver nanoparticles (AgNPs). These AgNPs were efficiently produced using 1:10 (extract and salt) ratio under stirring and heating, which was confirmed by surface plasmon resonance (SPR) band in UV-Visible spectroscopic analysis, and size of 73-91 nm determined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The synthesized AgNPs were used for Hg(II) detection in tap water, where the limits of detection and quantification were 2.6 µM and 8.9 µM, respectively. Furthermore, the subject AgNPs showed promising catalytic activity in the reduction of dyes and food colours including Congo red (CR), methylene blue (MB), malachite green (MG), methyl orange (MO), para-nitrophenol (PNP), rhodamine B (RdB), zarda yellow (ZY), deep green (DG), and bright red (BR). The synthesized AgNPs were also evaluated for their antioxidant, antimicrobial, and anticancer properties, where α-mangostin and its nanoparticles (Mang-AgNPs) exhibited promising IC50 values of 14.1 and 13.5 µg/mL, respectively against DU-145 cell line validated by in silico molecular docking study. This study is the first report highlighting the application of AgNPs of G. mangostana fruit pericarp extracts, and α-mangostin in Hg(II) detection, dyes degradation, and anticancer potential against DU-145. Finding of this study suggested the suitability of AgNPs as promising solid biosensor in Hg(II) metal detection, dyes reduction, and target in anticancer drug development.


Assuntos
Anti-Infecciosos , Garcinia mangostana , Mercúrio , Nanopartículas Metálicas , Antibacterianos/química , Anti-Infecciosos/química , Antioxidantes/química , Antioxidantes/farmacologia , Corantes/química , Garcinia mangostana/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Xantonas
17.
Sci Rep ; 11(1): 6245, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737575

RESUMO

Cisplatin is an efficient anticancer drug against various types of cancers however, its usage involves side effects. We investigated the mechanisms of action of indole derivative, 2-(5-methoxy-2-methyl-1H-indol-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene] acetohydrazide (MMINA) against anticancer drug (cisplatin) induced organ damage using a rodent model. MMINA treatment reversed Cisplatin-induced NO and malondialdehyde (MDA) augmentation while boosted the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD). The animals were divided into five groups (n = 7). Group1: Control (Normal) group, Group 2: DMSO group, Group 3: cisplatin group, Group 4: cisplatin + MMINA group, Group 5: MMINA group. MMINA treatment normalized plasma levels of biochemical enzymes. We observed a significant decrease in CD4+COX-2, STAT3, and TNF-α cell population in whole blood after MMINA dosage. MMINA downregulated the expression of various signal transduction pathways regulating the genes involved in inflammation i.e. NF-κB, STAT-3, IL-1, COX-2, iNOS, and TNF-α. The protein expression of these regulatory factors was also downregulated in the liver, kidney, heart, and brain. In silico docking and dynamic simulations data were in agreement with the experimental findings. The physiochemical properties of MMINA predicted it as a good drug-like molecule and its mechanism of action is predictably through inhibition of ROS and inflammation.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Cisplatino/efeitos adversos , Indóis/administração & dosagem , Indóis/farmacocinética , Simulação de Acoplamento Molecular , Animais , Antineoplásicos/administração & dosagem , Antioxidantes/química , Cisplatino/administração & dosagem , Glutationa Peroxidase/metabolismo , Indóis/química , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Malondialdeído/metabolismo , Modelos Animais , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
18.
J Biol Res (Thessalon) ; 27: 5, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32158705

RESUMO

Zika virus (ZIKV) is a newly emergent relative of the Flaviviridae family and linked to dengue (DENV) and Chikungunya (CHIVKV). ZIKV is one of the rising pathogens promptly surpassing geographical borders. ZIKV infection was characterized by mild disease with fever, headache, rash, arthralgia and conjunctivitis, with exceptional reports of an association with Guillain-Barre syndrome (GBS) and microcephaly. However, since the end of 2015, an increase in the number of GBS associated cases and an astonishing number of microcephaly in fetus and new-borns in Brazil have been related to ZIKV infection, raising serious worldwide public health concerns. ZIKV is transmitted by the bite of infected female mosquitoes of Aedes species. Clarifying such worrisome relationships is, thus, a current unavoidable goal. Here, we extensively described the current understanding of the effects of ZIKV on heath, clinical manifestation, diagnosis and treatment options based on modern, alternative and complementary medicines regarding the disease.

19.
Eur J Pharmacol ; 885: 173496, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841640

RESUMO

The rapid breakout of the coronavirus disease of 2019 (COVID-19) has been declared pandemic with serious global concern due to high morbidity and mortality. As we enter the phase beyond limitations there is an urgent need for explicit treatment against COVID-19. To face this immediate global challenge, drug development from scratch is a lengthy process and unrealistic to conquer this battle. Drug repurposing is an emerging and practical approach where existing drugs, safe for humans, are redeployed to fight this harder to treat disease. A number of multi clinical studies have repurposed combined cocktail (remdesivir + chloroquine and favipiravir + chloroquine) to be effective against COVID-19. However, the exact mechanistic aspect has not yet been revealed. In the present study, we have tried to decipher the mechanistic aspects of existing medicines at the viral entry and replication stage via the structural viroinformatics approach. Here we implied the molecular docking and dynamic simulations with emphasis on the unique structural properties of host receptor angiotensin-converting enzyme 2 (ACE2), SARS-CoV2 spike protein and RNA dependent RNA polymerase enzyme (RdRp) of the SARS-CoV2. Deep structural analysis of target molecules exposed key binding residues and structural twists involved in binding with important pharmacophore features of existing drugs [(7-chloro-N-[5-(diethylamino)pentan-2-yl]quinolin-4-amine (chloroquine),N-[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide N-[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide) (SSAA09E2), 2-ethylbutyl (2S)-2-{[(S)-{[(2R,3S,4R,5R)-5-{4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl}-5-cyano-3 (remdesivir) and 6-Fluor-3-oxo-3,4-dihydro-2-pyrazincarboxamid (favipiravir)]. It is evident from this structural informatics study that combo of chloroquine + SSAA09E2 with remdesivir or favipiravir could significantly restrain the virus at the entry and replication stage. Thus, drug repurposition is an attractive approach with reduced time and cost to treat COVID-19, we don't have enough time as the whole world is lockdown and we are in urgent need of an obvious therapeutics' measures.


Assuntos
Biologia Computacional , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , COVID-19 , Infecções por Coronavirus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
Front Genet ; 11: 749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849781

RESUMO

Non-syndromic oculocutaneous albinism (nsOCA) is an inherited disorder of melanin biosynthesis with autosomal recessive mode of inheritance, presenting either hypopigmented or depigmented skin, hair, and eyes. It is genetically heterogeneous with seven loci (OCA1-OCA7) reported to date. In the present study, we have reported three consanguineous families (A, B, C) presenting identical nsOCA phenotypes. Sanger sequencing revealed a novel [NM_000372.5: c.826 T > C, p.(Cys276Arg)] and a recurrent variant [NM_000372.5: c.832C > T, p.(Arg278∗)] in tyrosinase (TYR) in families A and B, respectively. Microsatellite marker-based homozygosity mapping linked family C to OCA4. Sequence analysis identified a novel insertion variant (NM_016180.5: c.1331_1332insA) in the SLC45A2. Further, in silico mutagenesis and dynamic simulation approaches revealed that a novel Cys276Arg variant abolished the cysteine bridge and might contribute toward decreased stability of the TYR protein. Our study expands the mutation spectrum of the TYR and SLC45A2 genes and emphasizes that molecular investigations are essential for accurate disease diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA