Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Alzheimers Dement ; 20(1): 243-252, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37563770

RESUMO

INTRODUCTION: Our previously developed blood-based transcriptional risk scores (TRS) showed associations with diagnosis and neuroimaging biomarkers for Alzheimer's disease (AD). Here, we developed brain-based TRS. METHODS: We integrated AD genome-wide association study summary and expression quantitative trait locus data to prioritize target genes using Mendelian randomization. We calculated TRS using brain transcriptome data of two independent cohorts (N = 878) and performed association analysis of TRS with diagnosis, amyloidopathy, tauopathy, and cognition. We compared AD classification performance of TRS with polygenic risk scores (PRS). RESULTS: Higher TRS values were significantly associated with AD, amyloidopathy, tauopathy, worse cognition, and faster cognitive decline, which were replicated in an independent cohort. The AD classification performance of PRS was increased with the inclusion of TRS up to 16% with the area under the curve value of 0.850. DISCUSSION: Our results suggest brain-based TRS improves the AD classification of PRS and may be a potential AD biomarker. HIGHLIGHTS: Transcriptional risk score (TRS) is developed using brain RNA-Seq data. Higher TRS values are shown in Alzheimer's disease (AD). TRS improves the AD classification power of PRS up to 16%. TRS is associated with AD pathology presence. TRS is associated with worse cognitive performance and faster cognitive decline.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Cognição , Fatores de Risco , Biomarcadores , Estratificação de Risco Genético
3.
BMC Med Educ ; 18(1): 186, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081899

RESUMO

BACKGROUND: In the highly competitive environment of academic medicine, junior faculty investigators face high attrition rates due to challenges in finding effective mentorship, securing grant funding, and obtaining resources to support their career development and research productivity. The purpose of this study was to describe the centralized, cost-sharing design of the Independent Investigator Incubator (I3) program as a novel approach to junior faculty mentoring and to evaluate quantitative outcomes for program improvement. METHODS: In September 2014, the I3 pilot program, a comprehensive mentorship program targeting junior faculty pursuing research careers, was launched. Participants included junior faculty during the crucial first three years of their research careers or during their transition from career development awards to more independent research. Following initial screening, the I3 mentees were paired with a senior faculty "super-mentor" with expertise in either basic science or clinical research. Mentees were provided with robust traditional one-on-one mentoring, targeted feedback from a super-mentor review committee, as well as biostatistician and grant writing support. To assess the effectiveness of the I3 program, we tracked outcome measures via baseline and 12-month mentee surveys. Data collected assessed program diversity, mentee self-assessments, evaluation of the mentoring relationship, scholarship and productivity metrics. Raw data were analyzed using a paired t-test in Excel (P < 0.05). RESULTS: Results of the baseline mentee self-assessment survey found that the I3 mentees indicated common "perceive deficits" including navigating the organizational and institutional culture, clear direction in achieving promotion and tenure, among others. When baseline mentee survey responses were compared to 12-month responses, we identified strong "perceived growth" in categories, such as Research and Interpersonal Skills and Career Development Skills. Further, productivity metrics at 12-months revealed that roughly 80% of I3 mentees successfully published a manuscript(s). The I3 program has helped generate roughly $12.1 million dollars in investigator-initiated funding after two years in the program. CONCLUSION: The I3 program allows for shared costs between institutions and increased availability of successful subject matter experts. Study results imply that the I3 mentoring program provides transformative mentorship for junior faculty. Using our findings, we developed courses and an annual "snapshot" of mentee performance for mentors.


Assuntos
Escolha da Profissão , Docentes de Medicina/educação , Tutoria/organização & administração , Mentores , Desenvolvimento de Programas , Pesquisadores/educação , Mobilidade Ocupacional , Humanos , Relações Interpessoais , Tutoria/economia , Cultura Organizacional , Projetos Piloto , Desenvolvimento de Programas/economia , Avaliação de Programas e Projetos de Saúde , Pesquisadores/economia , Apoio à Pesquisa como Assunto/economia
4.
Alzheimers Res Ther ; 16(1): 5, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195609

RESUMO

BACKGROUND: Alzheimer's dementia (AD) pathogenesis involves complex mechanisms, including microRNA (miRNA) dysregulation. Integrative network and machine learning analysis of miRNA can provide insights into AD pathology and prognostic/diagnostic biomarkers. METHODS: We performed co-expression network analysis to identify network modules associated with AD, its neuropathology markers, and cognition using brain tissue miRNA profiles from the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) (N = 702) as a discovery dataset. We performed association analysis of hub miRNAs with AD, its neuropathology markers, and cognition. After selecting target genes of the hub miRNAs, we performed association analysis of the hub miRNAs with their target genes and then performed pathway-based enrichment analysis. For replication, we performed a consensus miRNA co-expression network analysis using the ROS/MAP dataset and an independent dataset (N = 16) from the Gene Expression Omnibus (GEO). Furthermore, we performed a machine learning approach to assess the performance of hub miRNAs for AD classification. RESULTS: Network analysis identified a glucose metabolism pathway-enriched module (M3) as significantly associated with AD and cognition. Five hub miRNAs (miR-129-5p, miR-433, miR-1260, miR-200a, and miR-221) of M3 had significant associations with AD clinical and/or pathologic traits, with miR129-5p by far the strongest across all phenotypes. Gene-set enrichment analysis of target genes associated with their corresponding hub miRNAs identified significantly enriched biological pathways including ErbB, AMPK, MAPK, and mTOR signaling pathways. Consensus network analysis identified two AD-associated consensus network modules and two hub miRNAs (miR-129-5p and miR-221). Machine learning analysis showed that the AD classification performance (area under the curve (AUC) = 0.807) of age, sex, and APOE ε4 carrier status was significantly improved by 6.3% with inclusion of five AD-associated hub miRNAs. CONCLUSIONS: Integrative network and machine learning analysis identified miRNA signatures, especially miR-129-5p, as associated with AD, its neuropathology markers, and cognition, enhancing our understanding of AD pathogenesis and leading to better performance of AD classification as potential diagnostic/prognostic biomarkers.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , MicroRNAs , Humanos , Doença de Alzheimer/genética , Espécies Reativas de Oxigênio , MicroRNAs/genética , Biomarcadores
5.
Brain Imaging Behav ; 17(2): 223-256, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36484922

RESUMO

The prevalence of Alzheimer's disease is projected to reach 13 million in the U.S. by 2050. Although major efforts have been made to avoid this outcome, so far there are no treatments that can stop or reverse the progressive cognitive decline that defines Alzheimer's disease. The utilization of preventative treatment before significant cognitive decline has occurred may ultimately be the solution, necessitating a reliable biomarker of preclinical/prodromal disease stages to determine which older adults are most at risk. Quantitative cerebral blood flow is a promising potential early biomarker for Alzheimer's disease, but the spatiotemporal patterns of altered cerebral blood flow in Alzheimer's disease are not fully understood. The current systematic review compiles the findings of 81 original studies that compared resting gray matter cerebral blood flow in older adults with mild cognitive impairment or Alzheimer's disease and that of cognitively normal older adults and/or assessed the relationship between cerebral blood flow and objective cognitive function. Individuals with Alzheimer's disease had relatively decreased cerebral blood flow in all brain regions investigated, especially the temporoparietal and posterior cingulate, while individuals with mild cognitive impairment had consistent results of decreased cerebral blood flow in the posterior cingulate but more mixed results in other regions, especially the frontal lobe. Most papers reported a positive correlation between regional cerebral blood flow and cognitive function. This review highlights the need for more studies assessing cerebral blood flow changes both spatially and temporally over the course of Alzheimer's disease, as well as the importance of including potential confounding factors in these analyses.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Biomarcadores
6.
Biol Psychiatry ; 93(9): 842-851, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150909

RESUMO

BACKGROUND: DNA methylation is a key epigenetic marker, and its alternations may be involved in Alzheimer's disease (AD). CpGs sharing similar biological functions or pathways tend to be co-methylated. METHODS: We performed an integrative network-based DNA methylation analysis on 2 independent cohorts (N = 941) using brain DNA methylation profiles and RNA-sequencing as well as AD pathology data. RESULTS: Weighted co-methylation network analysis identified 6 modules as significantly associated with neuritic plaque burden. In total, 15 hub CpGs including 3 novel CpGs were identified and replicated as being significantly associated with AD pathology. Furthermore, we identified and replicated 4 target genes (ATP6V1G2, VCP, RAD52, and LST1) as significantly regulated by DNA methylation at hub CpGs. In particular, VCP gene expression was also associated with AD pathology in both cohorts. CONCLUSIONS: This integrative network-based multiomics study provides compelling evidence for a potential role of DNA methylation alternations and their target genes in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Metilação de DNA/genética , Encéfalo/metabolismo , Epigenômica
7.
Res Sq ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961387

RESUMO

Background: Alzheimer's dementia (AD) pathogenesis involves complex mechanisms, including microRNA (miRNA) dysregulation. Integrative network and machine learning analysis of miRNA can provide insights into AD pathology and prognostic/diagnostic biomarkers. Methods: We performed co-expression network analysis to identify network modules associated with AD, its neuropathology markers, and cognition using brain tissue miRNA profiles from the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) (N = 702) as a discovery dataset. We performed association analysis of hub miRNAs with AD, its neuropathology markers, and cognition. After selecting target genes of the hub miRNAs, we performed association analysis of the hub miRNAs with their target genes and then performed pathway-based enrichment analysis. For replication, we performed a consensus miRNA co-expression network analysis using the ROS/MAP dataset and an independent dataset (N = 16) from the Gene Expression Omnibus (GEO). Furthermore, we performed a machine learning approach to assess the performance of hub miRNAs for AD classification. Results: Network analysis identified a glucose metabolism pathway-enriched module (M3) as significantly associated with AD and cognition. Five hub miRNAs (miR-129-5p, miR-433, miR-1260, miR-200a, and miR-221) of M3 had significant associations with AD clinical and/or pathologic traits, with miR129-5p by far the strongest across all phenotypes. Gene-set enrichment analysis of target genes associated with their corresponding hub miRNAs identified significantly enriched biological pathways including ErbB, AMPK, MAPK, and mTOR signaling pathways. Consensus network analysis identified two AD-associated consensus network modules, and two hub miRNAs (miR-129-5p and miR-221). Machine learning analysis showed that the AD classification performance (area under the curve (AUC) = 0.807) of age, sex, and apoE ε4 carrier status was significantly improved by 6.3% with inclusion of five AD-associated hub miRNAs. Conclusions: Integrative network and machine learning analysis identified miRNA signatures, especially miR-129-5p, as associated with AD, its neuropathology markers, and cognition, enhancing our understanding of AD pathogenesis and leading to better performance of AD classification as potential diagnostic/prognostic biomarkers.

8.
medRxiv ; 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37398438

RESUMO

Investigating the association of lipidome profiles with central Alzheimer's disease (AD) biomarkers, including amyloid/tau/neurodegeneration (A/T/N), can provide a holistic view between the lipidome and AD. We performed cross-sectional and longitudinal association analysis of serum lipidome profiles with AD biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort (N=1,395). We identified lipid species, classes, and network modules that were significantly associated with cross-sectional and longitudinal changes of A/T/N biomarkers for AD. Notably, we identified the lysoalkylphosphatidylcholine (LPC(O)) as associated with "A/N" biomarkers at baseline at lipid species, class, and module levels. Also, GM3 ganglioside showed significant association with baseline levels and longitudinal changes of the "N" biomarkers at species and class levels. Our study of circulating lipids and central AD biomarkers enabled identification of lipids that play potential roles in the cascade of AD pathogenesis. Our results suggest dysregulation of lipid metabolic pathways as precursors to AD development and progression.

9.
medRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993271

RESUMO

Determining the genetic architecture of Alzheimer's disease (AD) pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we performed a genome-wide association study of cortical tau quantified by positron emission tomography in 3,136 participants from 12 independent studies. The CYP1B1-RMDN2 locus was associated with tau deposition. The most significant signal was at rs2113389, which explained 4.3% of the variation in cortical tau, while APOE4 rs429358 accounted for 3.6%. rs2113389 was associated with higher tau and faster cognitive decline. Additive effects, but no interactions, were observed between rs2113389 and diagnosis, APOE4 , and Aß positivity. CYP1B1 expression was upregulated in AD. rs2113389 was associated with higher CYP1B1 expression and methylation levels. Mouse model studies provided additional functional evidence for a relationship between CYP1B1 and tau deposition but not Aß. These results may provide insight into the genetic basis of cerebral tau and novel pathways for therapeutic development in AD.

10.
Alzheimers Dement (Amst) ; 14(1): e12317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769874

RESUMO

Introduction: We investigated single-nucleotide polymorphisms (SNPs) in IFITM3, an innate immunity gene and modulator of amyloid beta in Alzheimer's disease (AD), for association with cognition and AD biomarkers. Methods: We used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 1565) and AddNeuroMed (N = 633) as discovery and replication samples, respectively. We performed gene-based association analysis of SNPs in IFITM3 with cognitive performance and SNP-based association analysis with cognitive decline and amyloid, tau, and neurodegeneration biomarkers for AD. Results: Gene-based association analysis showed that IFITM3 was significantly associated with cognitive performance. Particularly, rs10751647 in IFITM3 was associated with less cognitive decline, less amyloid and tau burden, and less brain atrophy in ADNI. The association of rs10751647 with cognitive decline and brain atrophy was replicated in AddNeuroMed. Discussion: This suggests that rs10751647 in IFITM3 is associated with less vulnerability for cognitive decline and AD biomarkers, providing mechanistic insight regarding involvement of immunity and infection in AD. Highlights: IFITM3 is significantly associated with cognitive performance.rs10751647 in IFITM3 is associated with cognitive decline rates with replication.rs10751647 is associated with amyloid beta load, cerebrospinal fluid phosphorylated tau levels, and brain atrophy.rs10751647 is associated with IFITM3 expression levels in blood and brain.rs10751647 in IFITM3 is related to less vulnerability to Alzheimer's disease pathogenesis.

11.
Behav Genet ; 41(4): 565-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21184168

RESUMO

The High Alcohol Preferring (HAP1) and Low Alcohol Preferring (LAP1) mouse lines were selectively bred for differences in alcohol intake. The HAP1 and LAP1 mice are essentially non-inbred lines that originated from an outbred colony of HS/Ibg mice, a heterogeneous stock developed from intercrossing 8 inbred strains of mice. In a former genomewide SNP association study, we identified quantitative trait loci (QTL) on chromosomes 1, 3, 5, and 9 (Bice et al. 2009). Provisional QTL were also identified on chromosomes 8 and X. In the present study, using the same F2 DNA samples, we placed a much denser set of SNPs within each of those QTL regions. Using the same analytical approach employed previously, which utilizes ancestral recombination to fine map the QLT interval, we obtained significant LOD scores on chromosomes 1, 3, and 9, only. Our results using a dense set of SNP markers suggest that there are multiple loci contributing to alcohol preference on those three chromosomes.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Comportamento de Escolha , Cruzamentos Genéticos , Marcadores Genéticos/genética , Genoma , Genótipo , Escore Lod , Masculino , Camundongos , Fenótipo , Recombinação Genética
12.
Alzheimers Res Ther ; 13(1): 183, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732252

RESUMO

BACKGROUND: The interaction between the brain and periphery might play a crucial role in the development of Alzheimer's disease (AD). METHODS: Using blood transcriptomic profile data from two independent AD cohorts, we performed expression quantitative trait locus (cis-eQTL) analysis of 29 significant genetic loci from a recent large-scale genome-wide association study to investigate the effects of the AD genetic variants on gene expression levels and identify their potential target genes. We then performed differential gene expression analysis of identified AD target genes and linear regression analysis to evaluate the association of differentially expressed genes with neuroimaging biomarkers. RESULTS: A cis-eQTL analysis identified and replicated significant associations in seven genes (APH1B, BIN1, FCER1G, GATS, MS4A6A, RABEP1, TRIM4). APH1B expression levels in the blood increased in AD and were associated with entorhinal cortical thickness and global cortical amyloid-ß deposition. CONCLUSION: An integrative analysis of genetics, blood-based transcriptomic profiles, and imaging biomarkers suggests that APH1B expression levels in the blood might play a role in the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Endopeptidases , Proteínas de Membrana , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Endopeptidases/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana/genética , Transcriptoma
13.
Alzheimers Res Ther ; 13(1): 164, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610832

RESUMO

BACKGROUND: Accumulating evidence suggests that BMI1 confers protective effects against Alzheimer's disease (AD). However, the mechanism remains elusive. Based on recent pathophysiological evidence, we sought for the first time to identify genetic variants in BMI1 as associated with AD biomarkers, including amyloid-ß. METHODS: We used genetic, longitudinal cognition, and cerebrospinal fluid (CSF) biomarker data from participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (N = 1565). First, we performed a gene-based association analysis of common single nucleotide polymorphisms (SNPs) (minor allele frequency (MAF) > 5%) located within ± 20 kb of the gene boundary of BMI1, an optimal width for including potential regulatory SNPs in the 5' and 3' untranslated regions (UTR) of BMI1, with CSF Aß1-42 levels. Second, we performed cross-sectional and longitudinal association analyses of SNPs in BMI1 with cognitive performance using linear and mixed-effects models. We replicated association of SNPs in BMI1 with cognitive performance in an independent cohort (N=1084), Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP). RESULTS: Gene-based genetic association analysis showed that BMI1 was significantly associated with CSF Aß1-42 levels after adjusting for multiple testing using permutation (permutation-corrected p value=0.005). rs17415557 in BMI1 showed the most significant association with CSF Aß1-42 levels. Participants with minor alleles of rs17415557 have increased CSF Aß1-42 levels compared to those with no minor alleles. Further analysis identified and replicated the minor allele of rs17415557 as being significantly associated with slower cognitive decline rates in AD. CONCLUSIONS: Our findings provide fundamental evidence that BMI1 rs17415557 may serve as a protective mechanism related to AD pathogenesis, which supports the results of previous studies linking BMI1 to protection against AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Disfunção Cognitiva/genética , Estudos Transversais , Humanos , Complexo Repressor Polycomb 1 , Proteínas tau
14.
Front Genet ; 9: 513, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564267

RESUMO

Humans show sex differences related to alcohol use disorders (AUD). Animal model research has the potential to provide important insight into how sex differences affect alcohol consumption, particularly because female animals frequently drink more than males. In previous work, inbred strains of the selectively bred alcohol-preferring (P) and non-preferring (NP) rat lines revealed a highly significant quantitative trait locus (QTL) on rat chromosome 4, with a logarithm of the odds score of 9.2 for alcohol consumption. Recently, interval-specific congenic strains (ISCS) were developed by backcrossing the congenic P.NP line to inbred P (iP) rats to further refine the chromosome 4 QTL region. Two ISCS sub-strains, ISCS-A and ISCS-B, were obtained with a narrowed QTL, where the smallest region of overlap consisted of 8.9 Mb in ISCS-B. Interestingly, we found that females from both ISCS lines consumed significantly less alcohol than female iP controls (p < 0.05), while no differences in alcohol consumption were observed between male ISCS and iP controls. RNA-sequencing was performed on the nucleus accumbens of alcohol-naïve female ISCS-B and iP rats, which revealed differentially expressed genes (DEG) with greater than 2-fold change and that were functionally relevant to behavior. These DEGs included down-regulation of Oxt, Asb4, Gabre, Gabrq, Chat, Slc5a7, Slc18a8, Slc10a4, and Ngfr, and up-regulation of Ttr, Msln, Mpzl2, Wnt6, Slc17a7, Aldh1a2, and Gstm2. Pathway analysis identified significant alterations in gene networks controlling nervous system development and function, as well as cell signaling, GABA and serotonin receptor signaling and G-protein coupled receptor signaling. In addition, ß-estradiol was identified as the most significant upstream regulator. The expression levels of estrogen-responsive genes that mapped to the QTL interval and have been previously associated with alcohol consumption were measured using RT-qPCR. We found that expression of the Adcyap1r1 gene, encoding the pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor, was upregulated in female ISCS-B compared to female iP controls, while no differences were exhibited in males. In addition, sequence variants in the Adcyap1r1 promoter region showed a differential response to estrogen stimulation in vitro. These findings demonstrate that rat chromosome 4 QTL contains genetic variants that respond to estrogen and are associated with female alcohol consumption.

16.
Alcohol ; 44(6): 477-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20705418

RESUMO

The high and low alcohol-drinking (HAD and LAD) rats were selectively bred for differences in alcohol intake. The HAD/LAD rats originated from the N/Nih heterogeneous stock developed from intercrossing eight inbred rat strains. The HAD×LAD F2 were genotyped, and a powerful analytical approach, using ancestral recombination and F2 recombination, was used to narrow a quantitative trait loci (QTL) for alcohol drinking to a 2-cM region on distal chromosome 10 that was in common in the HAD1/LAD1 and HAD2/LAD2 analyses. Quantitative real-time PCR was used to examine mRNA expression of six candidate genes (Crebbp, Trap1, Gnptg, Clcn7, Fahd1, and Mapk8ip3) located within the narrowed QTL region in the HAD1/LAD1 rats. Expression was examined in five brain regions, including the nucleus accumbens, amygdala, caudate putamen, hippocampus, and prefrontal cortex. All six genes showed differential expression in at least one brain region. Of the genes tested in this study, Crebbp and Mapk8ip3 may be the most promising candidates with regard to alcohol drinking.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/metabolismo , Proteína de Ligação a CREB/genética , Cruzamentos Genéticos , Etanol/administração & dosagem , Feminino , Expressão Gênica , Genótipo , Masculino , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase , Locos de Características Quantitativas/genética , RNA Mensageiro/análise , Ratos , Ratos Endogâmicos
17.
Mamm Genome ; 19(2): 69-76, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18214604

RESUMO

The high alcohol-preferring (HAP) and low alcohol-preferring (LAP) mice were selectively bred for differences in alcohol preference and consumption. Recently, a large-effect QTL was identified on chromosome 9. The peak for this QTL is near the Drd2 (dopamine receptor 2) locus. The present study examined Drd2 mRNA expression differences between the HAP1 and LAP1 mice in brain regions important in the dopaminergic-reward pathway, including the nucleus accumbens, hippocampus, amygdala, and septum. Results show that alcohol-naïve HAP1 mice exhibited lower levels of Drd2 mRNA expression in the nucleus accumbens and the hippocampus compared to LAP1 mice. No differences were found in the amygdala or septum. To determine if a sequence difference might underlie the expression difference, the Drd2 cDNA was sequenced in each line and one single nucleotide polymorphism (SNP) was identified in the 3' UTR. Both HAP and LAP 3' UTR were cloned in the luc-pGL3-promoter-luc vector. The polymorphism in the Drd2 3' UTR was assessed to determine its functional significance in modulating expression. In vitro expression analysis using neuroblastoma SK-N-SH cells resulted in a significant decrease in expression of the HAP 3' UTR luc construct compared with the LAP 3' UTR construct. This decreased expression is consistent with lower levels of Drd2 expression in the nucleus accumbens and the hippocampus as evidenced by qRT-PCR. These results suggest that the SNP may play a role in the differential expression of Drd2 between the HAP and LAP mice and that the polymorphism in Drd2 may contribute to alcohol preference.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Receptores de Dopamina D2/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Luciferases/metabolismo , Camundongos , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Dopamina D2/metabolismo
18.
Behav Genet ; 36(2): 248-60, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16482403

RESUMO

The High- and Low-Alcohol Preferring (HAP1/LAP1 and HAP2/LAP2) mouse lines were developed by selective breeding for differences in alcohol preference. They represent the only extant selectively bred mouse lines developed for this alcohol phenotype. Therefore, they provide a unique resource for QTL detection and mapping. Importantly, neither of the replicate lines is inbred and therefore, novel study designs can be employed to detect loci contributing to alcohol preference. Two independent studies, with very different approaches, were conducted in the HAP and LAP replicate lines. In Study 1, microsatellite markers were genotyped in the replicate HAP1/LAP1 and HAP2/LAP2 mice in QTL regions nominated by other mouse RI and F2 studies in order to detect divergence of allele frequencies in the two oppositely selected lines. Significant differences in allele frequencies were observed in the HAP1/LAP1 mice with markers on chromosome 9 (p<0.01). In the HAP2/LAP2 mice, significant differences in allele frequencies were identified on chromosomes 2 and 9 (p<0.01). In Study 2, a genome-wide screen was performed in a sample of 432 HAP1xLAP1 F2 animals and a QTL on chromosome 9 (LOD=5.04) was found which met criteria for genome wide significance (p<0.001). Gender specific analyses supported a greater effect of the QTL among female mice (LOD=5.19; p<0.0008) than male mice (LOD=1.19). This study provides additional evidence and confirmation that specific regions on chromosomes 9 and perhaps 2 are important for alcohol preference.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Comportamento de Escolha/fisiologia , Locos de Características Quantitativas/genética , Seleção Genética , Consumo de Bebidas Alcoólicas/psicologia , Alelos , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Feminino , Frequência do Gene/genética , Escore Lod , Masculino , Camundongos , Repetições de Microssatélites/genética , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA