Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Genome Res ; 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977842

RESUMO

A cattle pangenome representation was created based on the genome sequences of 898 cattle representing 57 breeds. The pangenome identified 83 Mb of sequence not found in the cattle reference genome, representing 3.1% novel sequence compared with the 2.71-Gb reference. A catalog of structural variants developed from this cattle population identified 3.3 million deletions, 0.12 million inversions, and 0.18 million duplications. Estimates of breed ancestry and hybridization between cattle breeds using insertion/deletions as markers were similar to those produced by single nucleotide polymorphism-based analysis. Hundreds of deletions were observed to have stratification based on subspecies and breed. For example, an insertion of a Bov-tA1 repeat element was identified in the first intron of the APPL2 gene and correlated with cattle breed geographic distribution. This insertion falls within a segment overlapping predicted enhancer and promoter regions of the gene, and could affect important traits such as immune response, olfactory functions, cell proliferation, and glucose metabolism in muscle. The results indicate that pangenomes are a valuable resource for studying diversity and evolutionary history, and help to delineate how domestication, trait-based breeding, and adaptive introgression have shaped the cattle genome.

2.
Nat Methods ; 17(11): 1103-1110, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020656

RESUMO

Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products.


Assuntos
Genoma Bacteriano/genética , Genoma Humano/genética , Metagenoma/genética , Metagenômica/métodos , Microbiota/genética , Algoritmos , Animais , Benchmarking , Microbioma Gastrointestinal/genética , Humanos , Análise de Sequência de DNA/métodos , Ovinos , Software , Especificidade da Espécie
3.
BMC Genomics ; 23(1): 344, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508966

RESUMO

BACKGROUND: The gaur (Bos gaurus) is the largest extant wild bovine species, native to South and Southeast Asia, with unique traits, and is listed as vulnerable by the International Union for Conservation of Nature (IUCN). RESULTS: We report the first gaur reference genome and identify three biological pathways including lysozyme activity, proton transmembrane transporter activity, and oxygen transport with significant changes in gene copy number in gaur compared to other mammals. These may reflect adaptation to challenges related to climate and nutrition. Comparative analyses with domesticated indicine (Bos indicus) and taurine (Bos taurus) cattle revealed genomic signatures of artificial selection, including the expansion of sperm odorant receptor genes in domesticated cattle, which may have important implications for understanding selection for male fertility. CONCLUSIONS: Apart from aiding dissection of economically important traits, the gaur genome will also provide the foundation to conserve the species.


Assuntos
Receptores Odorantes , Animais , Bovinos/genética , Genoma , Genômica , Masculino , Mamíferos , Receptores Odorantes/genética , Espermatozoides , Glicoproteínas da Zona Pelúcida
4.
Immunogenetics ; 74(3): 347-365, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35138437

RESUMO

Workshop cluster 1 (WC1) molecules are part of the scavenger receptor cysteine-rich (SRCR) superfamily and act as hybrid co-receptors for the γδ T cell receptor and as pattern recognition receptors for binding pathogens. These members of the CD163 gene family are expressed on γδ T cells in the blood of ruminants. While the presence of WC1+ γδ T cells in the blood of goats has been demonstrated using monoclonal antibodies, there was no information available about the goat WC1 gene family. The caprine WC1 multigenic array was characterized here for number, structure and expression of genes, and similarity to WC1 genes of cattle and among goat breeds. We found sequence for 17 complete WC1 genes and evidence for up to 30 SRCR a1 or d1 domains which represent distinct signature domains for individual genes. This suggests substantially more WC1 genes than in cattle. Moreover, goats had seven different WC1 gene structures of which 4 are unique to goats. Caprine WC1 genes also had multiple transcript splice variants of their intracytoplasmic domains that eliminated tyrosines shown previously to be important for signal transduction. The most distal WC1 SRCR a1 domains were highly conserved among goat breeds, but fewer were conserved between goats and cattle. Since goats have a greater number of WC1 genes and unique WC1 gene structures relative to cattle, goat WC1 molecules may have expanded functions. This finding may impact research on next-generation vaccines designed to stimulate γδ T cells.


Assuntos
Cabras , Linfócitos T , Animais , Bovinos/genética , Glicoproteínas de Membrana/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores Depuradores/metabolismo , Ruminantes , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
5.
J Dairy Sci ; 105(11): 9001-9011, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36085107

RESUMO

Recessive alleles represent genetic risk in populations that have undergone bottleneck events. We present a comprehensive framework for identification and validation of these genetic defects, including haplotype-based detection, variant selection from sequence data, and validation using knockout embryos. Holstein haplotype 2 (HH2), which causes embryonic death, was used to demonstrate the approach. Holstein haplotype 2 was identified using a deficiency-of-homozygotes approach and confirmed to negatively affect conception rate and stillbirths. Five carriers were present in a group of 183 sequenced Holstein bulls selected to maximize the coverage of unique haplotypes. Three variants concordant with haplotype calls were found in HH2: a high-priority frameshift mutation resulting, and 2 low-priority variants (1 synonymous variant, 1 premature stop codon). The frameshift in intraflagellar 80 (IFT80) was confirmed in a separate group of Holsteins from the 1000 Bull Genomes Project that shared no animals with the discovery set. IFT80-null embryos were generated by truncating the IFT80 transcript at exon 2 or 11 using a CRISPR-Cas9 system. Abattoir-derived oocytes were fertilized in vitro, and zygotes were injected at the one-cell stage either with a guide RNA and CAS9 mRNA complex (n = 100) or Cas9 mRNA (control, n = 100) before return to culture, and replicated 3 times. IFT80 is activated at the 8-cell stage, and IFT80-null embryos arrested at this stage of development, which is consistent with data from mouse hypomorphs and HH2 carrier-to-carrier matings. This frameshift in IFT80 on chromosome 1 at 107,172,615 bp (p.Leu381fs) disrupts WNT and hedgehog signaling, and is responsible for the death of homozygous embryos.


Assuntos
Códon sem Sentido , Proteínas Hedgehog , Bovinos , Masculino , Animais , Camundongos , Haplótipos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , RNA Guia de Cinetoplastídeos , Homozigoto , Proteínas de Transporte
6.
Immunogenetics ; 73(2): 187-201, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33479855

RESUMO

Goats and cattle diverged 30 million years ago but retain similarities in immune system genes. Here, the caprine T cell receptor (TCR) gene loci and transcription of its genes were examined and compared to cattle. We annotated the TCR loci using an improved genome assembly (ARS1) of a highly homozygous San Clemente goat. This assembly has already proven useful for describing other immune system genes including antibody and leucocyte receptors. Both the TCRγ (TRG) and TCRδ (TRD) loci were similarly organized in goats as in cattle and the gene sequences were highly conserved. However, the number of genes varied slightly as a result of duplications and differences occurred in mutations resulting in pseudogenes. WC1+ γδ T cells in cattle have been shown to use TCRγ genes from only one of the six available cassettes. The structure of that Cγ gene product is unique and may be necessary to interact with WC1 for signal transduction following antigen ligation. Using RT-PCR and PacBio sequencing, we observed the same restriction for goat WC1+ γδ T cells. In contrast, caprine WC1+ and WC1- γδ T cell populations had a diverse TCRδ gene usage although the propensity for particular gene usage differed between the two cell populations. Noncanonical recombination signal sequences (RSS) largely correlated with restricted expression of TCRγ and δ genes. Finally, caprine γδ T cells were found to incorporate multiple TRD diversity gene sequences in a single transcript, an unusual feature among mammals but also previously observed in cattle.


Assuntos
Cabras/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Animais , Bovinos , Mapeamento Cromossômico , Expressão Gênica , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T , Variação Genética , Cabras/imunologia , Cabras/metabolismo , Filogenia
7.
Genet Sel Evol ; 53(1): 40, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910501

RESUMO

BACKGROUND: Nellore cattle (Bos indicus) are well-known for their adaptation to warm and humid environments. Hair length and coat color may impact heat tolerance. The Nellore breed has been strongly selected for white coat, but bulls generally exhibit darker hair ranging from light grey to black on the head, neck, hump, and knees. Given the potential contribution of coat color variation to the adaptation of cattle populations to tropical and sub-tropical environments, our aim was to map positional and functional candidate genetic variants associated with darkness of hair coat (DHC) in Nellore bulls. RESULTS: We performed a genome-wide association study (GWAS) for DHC using data from 432 Nellore bulls that were genotyped for more than 777 k single nucleotide polymorphism (SNP) markers. A single major association signal was detected in the vicinity of the agouti signaling protein gene (ASIP). The analysis of whole-genome sequence (WGS) data from 21 bulls revealed functional variants that are associated with DHC, including a structural rearrangement involving ASIP (ASIP-SV1). We further characterized this structural variant using Oxford Nanopore sequencing data from 13 Australian Brahman heifers, which share ancestry with Nellore cattle; we found that this variant originates from a 1155-bp deletion followed by an insertion of a transposable element of more than 150 bp that may impact the recruitment of ASIP non-coding exons. CONCLUSIONS: Our results indicate that the variant ASIP sequence causes darker coat pigmentation on specific parts of the body, most likely through a decreased expression of ASIP and consequently an increased production of eumelanin.


Assuntos
Proteína Agouti Sinalizadora/genética , Bovinos/genética , Pigmentação/genética , Polimorfismo Genético , Pelo Animal/metabolismo , Animais , Elementos de DNA Transponíveis , Mutação INDEL , Melaninas/genética , Melaninas/metabolismo
8.
J Hered ; 112(2): 174-183, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33595645

RESUMO

Bison are an icon of the American West and an ecologically, commercially, and culturally important species. Despite numbering in the hundreds of thousands today, conservation concerns remain for the species, including the impact on genetic diversity of a severe bottleneck around the turn of the 20th century and genetic introgression from domestic cattle. Genetic diversity and admixture are best evaluated at genome-wide scale, for which a high-quality reference is necessary. Here, we use trio binning of long reads from a bison-Simmental cattle (Bos taurus taurus) male F1 hybrid to sequence and assemble the genome of the American plains bison (Bison bison bison). The male haplotype genome is chromosome-scale, with a total length of 2.65 Gb across 775 scaffolds (839 contigs) and a scaffold N50 of 87.8 Mb. Our bison genome is ~13× more contiguous overall and ~3400× more contiguous at the contig level than the current bison reference genome. The bison genome sequence presented here (ARS-UCSC_bison1.0) will enable new research into the evolutionary history of this iconic megafauna species and provide a new tool for the management of bison populations in federal and commercial herds.


Assuntos
Bison/genética , Genoma , Animais , Bovinos/genética , Mapeamento Cromossômico , Feminino , Variação Genética , Haplótipos , Hibridização Genética , Masculino
9.
J Hered ; 112(2): 184-191, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33438035

RESUMO

Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison-cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS_Simm1.0) is similar in length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date.


Assuntos
Bovinos/genética , Genoma , Animais , Bison , Mapeamento Cromossômico , Feminino , Haplótipos , Masculino
10.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32591382

RESUMO

Analysis of the cow microbiome, as well as host genetic influences on the establishment and colonization of the rumen microbiota, is critical for development of strategies to manipulate ruminal function toward more efficient and environmentally friendly milk production. To this end, the development and validation of noninvasive methods to sample the rumen microbiota at a large scale are required. In this study, we further optimized the analysis of buccal swab samples as a proxy for direct bacterial samples of the rumen of dairy cows. To identify an optimal time for sampling, we collected buccal swab and rumen samples at six different time points relative to animal feeding. We then evaluated several biases in these samples using a machine learning classifier (random forest) to select taxa that discriminate between buccal swab and rumen samples. Differences in the inverse Simpson's diversity, Shannon's evenness, and Bray-Curtis dissimilarities between methods were significantly less apparent when sampling was performed prior to morning feeding (P < 0.05), suggesting that this time point was optimal for representative sampling. In addition, the random forest classifier was able to accurately identify nonrumen taxa, including 10 oral and putative feed-associated taxa. Two highly prevalent (>60%) taxa in buccal and rumen samples had significant variance in relative abundances between sampling methods but could be qualitatively assessed via regular buccal swab sampling. This work not only provides new insights into the oral community of ruminants but also further validates and refines buccal swabbing as a method to assess the rumen bacterial in large herds.IMPORTANCE The gastrointestinal tracts of ruminants harbor a diverse microbial community that coevolved symbiotically with the host, influencing its nutrition, health, and performance. While the influence of environmental factors on rumen microbes is well documented, the process by which host genetics influences the establishment and colonization of the rumen microbiota still needs to be elucidated. This knowledge gap is due largely to our inability to easily sample the rumen microbiota. There are three common methods for rumen sampling but all of them present at least one disadvantage, including animal welfare, sample quality, labor, and scalability. The development and validation of noninvasive methods, such as buccal swabbing, for large-scale rumen sampling is needed to support studies that require large sample sizes to generate reliable results. The validation of buccal swabbing will also support the development of molecular tools for the early diagnosis of metabolic disorders associated with microbial changes in large herds.


Assuntos
Bovinos/microbiologia , Bochecha/microbiologia , Microbioma Gastrointestinal , Técnicas Microbiológicas/veterinária , Animais , Técnicas Microbiológicas/métodos , Rúmen/microbiologia , Estudos de Amostragem
11.
Genomics ; 111(3): 418-425, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501677

RESUMO

This study sought to characterize differences in gene content, regulation and structure between taurine cattle and river buffalo (one subspecies of domestic water buffalo) using the extensively annotated UMD3.1 cattle reference genome as a basis for comparisons. We identified 127 deletion CNV regions in river buffalo representing 5 annotated cattle genes. We also characterized 583 merged mobile element insertion (MEI) events within the upstream regions of annotated cattle genes. Transcriptome analysis in various tissue types on river buffalo confirmed the absence of four cattle genes. Four genes which may be related to phenotypic differences in meat quality and color, had upstream MEI predictions and were found to have significantly elevated expression in river buffalo compared with cattle. Our comparative alignment approach and gene expression analyses suggested a functional role for many genomic structural variations, which may contribute to the unique phenotypes of river buffalo.


Assuntos
Búfalos/genética , Perfilação da Expressão Gênica , Genoma , Polimorfismo Genético , Análise de Sequência de DNA , Animais , Bovinos/genética , Genômica
12.
BMC Genomics ; 20(1): 1000, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856728

RESUMO

BACKGROUND: Mammalian X chromosomes are mainly euchromatic with a similar size and structure among species whereas Y chromosomes are smaller, have undergone substantial evolutionary changes and accumulated male specific genes and genes involved in sex determination. The pseudoautosomal region (PAR) is conserved on the X and Y and pair during meiosis. The structure, evolution and function of mammalian sex chromosomes, particularly the Y chromsome, is still poorly understood because few species have high quality sex chromosome assemblies. RESULTS: Here we report the first bovine sex chromosome assemblies that include the complete PAR spanning 6.84 Mb and three Y chromosome X-degenerate (X-d) regions. The PAR comprises 31 genes, including genes that are missing from the X chromosome in current cattle, sheep and goat reference genomes. Twenty-nine PAR genes are single-copy genes and two are multi-copy gene families, OBP, which has 3 copies and BDA20, which has 4 copies. The Y chromosome X-d1, 2a and 2b regions contain 11, 2 and 2 gametologs, respectively. CONCLUSIONS: The ruminant PAR comprises 31 genes and is similar to the PAR of pig and dog but extends further than those of human and horse. Differences in the pseudoautosomal boundaries are consistent with evolutionary divergence times. A bovidae-specific expansion of members of the lipocalin gene family in the PAR reported here, may affect immune-modulation and anti-inflammatory responses in ruminants. Comparison of the X-d regions of Y chromosomes across species revealed that five of the X-Y gametologs, which are known to be global regulators of gene activity and candidate sexual dimorphism genes, are conserved.


Assuntos
Bovinos/genética , Cromossomo X , Cromossomo Y , Animais , Cromossomos de Mamíferos , Cães , Evolução Molecular , Ordem dos Genes , Humanos , Masculino , Sequenciamento Completo do Genoma
13.
Funct Integr Genomics ; 19(3): 409-419, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30734132

RESUMO

Duplicated sequences are an important source of gene evolution and structural variation within mammalian genomes. Using a read depth approach based on next-generation sequencing, we performed a genome-wide analysis of segmental duplications (SDs) and associated copy number variations (CNVs) in the water buffalo (Bubalus bubalis). By aligning short reads of Olimpia (the reference water buffalo) to the UMD3.1 cattle genome, we identified 1,038 segmental duplications comprising 44.6 Mb (equivalent to ~1.73% of the cattle genome) of the autosomal and X chromosomal sequence in the buffalo genome. We experimentally validated 70.3% (71/101) of these duplications using fluorescent in situ hybridization. We also detected a total of 1,344 CNV regions across 14 additional water buffaloes, amounting to 59.8 Mb of variable sequence or the equivalent of 2.2% of the cattle genome. The CNV regions overlap 1,245 genes that are significantly enriched for specific biological functions including immune response, oxygen transport, sensory system and signal transduction. Additionally, we performed array Comparative Genomic Hybridization (aCGH) experiments using the 14 water buffaloes as test samples and Olimpia as the reference. Using a linear regression model, a high Pearson correlation (r = 0.781) was observed between the log2 ratios between copy number estimates and the log2 ratios of aCGH probes. We further designed Quantitative PCR assays to confirm CNV regions within or near annotated genes and found 74.2% agreement with our CNV predictions. These results confirm sub-chromosome-scale structural rearrangements present in the cattle and water buffalo. The information on genome variation that will be of value for evolutionary and phenotypic studies, and may be useful for selective breeding of both species.


Assuntos
Búfalos/genética , Variações do Número de Cópias de DNA , Duplicações Segmentares Genômicas , Animais , Genoma
14.
BMC Genomics ; 19(1): 441, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871610

RESUMO

BACKGROUND: Due to the advancement in high throughput technology, single nucleotide polymorphism (SNP) is routinely being incorporated along with phenotypic information into genetic evaluation. However, this approach often cannot achieve high accuracy for some complex traits. It is possible that SNP markers are not sufficient to predict these traits due to the missing heritability caused by other genetic variations such as microsatellite and copy number variation (CNV), which have been shown to affect disease and complex traits in humans and other species. RESULTS: In this study, CNVs were included in a SNP based genomic selection framework. A Nellore cattle dataset consisting of 2230 animals genotyped on BovineHD SNP array was used, and 9 weight and carcass traits were analyzed. A total of six models were implemented and compared based on their prediction accuracy. For comparison, three models including only SNPs were implemented: 1) BayesA model, 2) Bayesian mixture model (BayesB), and 3) a GBLUP model without polygenic effects. The other three models incorporating both SNP and CNV included 4) a Bayesian model similar to BayesA (BayesA+CNV), 5) a Bayesian mixture model (BayesB+CNV), and 6) GBLUP with CNVs modeled as a covariable (GBLUP+CNV). Prediction accuracies were assessed based on Pearson's correlation between de-regressed EBVs (dEBVs) and direct genomic values (DGVs) in the validation dataset. For BayesA, BayesB and GBLUP, accuracy ranged from 0.12 to 0.62 across the nine traits. A minimal increase in prediction accuracy for some traits was noticed when including CNVs in the model (BayesA+CNV, BayesB+CNV, GBLUP+CNV). CONCLUSIONS: This study presents the first genomic prediction study integrating CNVs and SNPs in livestock. Combining CNV and SNP marker information proved to be beneficial for genomic prediction of some traits in Nellore cattle.


Assuntos
Bovinos/genética , Variações do Número de Cópias de DNA/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética , Animais , Marcadores Genéticos/genética , Técnicas de Genotipagem , Fenótipo , Controle de Qualidade
15.
Immunogenetics ; 70(5): 317-326, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29063126

RESUMO

The domestic goat (Capra hircus) is an important ruminant species both as a source of antibody-based reagents for research and biomedical applications and as an economically important animal for agriculture, particularly for developing nations that maintain most of the global goat population. Characterization of the loci encoding the goat immune repertoire would be highly beneficial for both vaccine and immune reagent development. However, in goat and other species whose reference genomes were generated using short-read sequencing technologies, the immune loci are poorly assembled as a result of their repetitive nature. Our recent construction of a long-read goat genome assembly (ARS1) has facilitated characterization of all three antibody loci with high confidence and comparative analysis to cattle. We observed broad similarity of goat and cattle antibody-encoding loci but with notable differences that likely influence formation of the functional antibody repertoire. The goat heavy-chain locus is restricted to only four functional and nearly identical IGHV genes, in contrast to the ten observed in cattle. Repertoire analysis indicates that light-chain usage is more balanced in goats, with greater representation of kappa light chains (~ 20-30%) compared to that in cattle (~ 5%). The present study represents the first characterization of the goat antibody loci and will help inform future investigations of their antibody responses to disease and vaccination.


Assuntos
Bovinos/genética , Genoma , Cabras/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Imunoglobulinas/genética , Sequência de Aminoácidos , Animais , Feminino , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/imunologia , Homologia de Sequência
16.
Genet Sel Evol ; 50(1): 43, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134820

RESUMO

BACKGROUND: Runs of homozygosity (ROH) islands are stretches of homozygous sequence in the genome of a large proportion of individuals in a population. Algorithms for the detection of ROH depend on the similarity of haplotypes. Coverage gaps and copy number variants (CNV) may result in incorrect identification of such similarity, leading to the detection of ROH islands where none exists. Misidentified hemizygous regions will also appear as homozygous based on sequence variation alone. Our aim was to identify ROH islands influenced by marker coverage gaps or CNV, using Illumina BovineHD BeadChip (777 K) single nucleotide polymorphism (SNP) data for Austrian Brown Swiss, Tyrol Grey and Pinzgauer cattle. METHODS: ROH were detected using clustering, and ROH islands were determined from population inbreeding levels for each marker. CNV were detected using a multivariate copy number analysis method and a hidden Markov model. SNP coverage gaps were defined as genomic regions with intermarker distances on average longer than 9.24 kb. ROH islands that overlapped CNV regions (CNVR) or SNP coverage gaps were considered as potential artefacts. Permutation tests were used to determine if overlaps between CNVR with copy losses and ROH islands were due to chance. Diversity of the haplotypes in the ROH islands was assessed by haplotype analyses. RESULTS: In Brown Swiss, Tyrol Grey and Pinzgauer, we identified 13, 22, and 24 ROH islands covering 26.6, 389.0 and 35.8 Mb, respectively, and we detected 30, 50 and 71 CNVR derived from CNV by using both algorithms, respectively. Overlaps between ROH islands, CNVR or coverage gaps occurred for 7, 14 and 16 ROH islands, respectively. About 37, 44 and 52% of the ROH islands coverage in Brown Swiss, Tyrol Grey and Pinzgauer, respectively, were affected by copy loss. Intersections between ROH islands and CNVR were small, but significantly larger compared to ROH islands at random locations across the genome, implying an association between ROH islands and CNVR. Haplotype diversity for reliable ROH islands was lower than for ROH islands that intersected with copy loss CNVR. CONCLUSIONS: Our findings show that a significant proportion of the ROH islands in the bovine genome are artefacts due to CNV or SNP coverage gaps.


Assuntos
Bovinos/genética , Variações do Número de Cópias de DNA , Técnicas de Genotipagem/normas , Homozigoto , Animais , Haplótipos , Polimorfismo de Nucleotídeo Único
17.
PLoS Genet ; 11(11): e1005387, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26540184

RESUMO

Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.


Assuntos
Bovinos/genética , Linhagem , Recombinação Genética , Animais , Mapeamento Cromossômico , Feminino , Masculino
18.
J Dairy Sci ; 101(11): 10478-10494, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30146289

RESUMO

Ergot alkaloids in endophyte-infected grasses inhibit prolactin secretion and reduce milk production in lactating cows. However, we previously showed that prepartum consumption of infected seed throughout the dry period did not inhibit subsequent milk production and prior exposure to bromocriptine (ergot peptide) actually increased production in the next lactation. To identify changes in the transcriptome and molecular pathways mediating the mammary gland's response to ergot alkaloids in the diet, RNA sequencing (RNA-seq) was performed on mammary tissues obtained from 22 multiparous Holstein cows exposed to 1 of 3 treatments. Starting at 90 ± 4 d prepartum, cows were fed endophyte-free fescue seed (control; CON), endophyte-free fescue seed plus 3×/wk subcutaneous injections of bromocriptine (BROMO; 0.1 mg/kg of BW), or endophyte-infected fescue seed (INF) as 10% of the diet. Cows were dried off 60 ± 2 d prepartum. Mammary biopsies from 4 (BROMO, INF) or 5 (CON) cows/treatment at each of the 3 phases were obtained: 7 d before dry off during the initial lactation (L1), mid-dry period (D), and 10 d postpartum (L2). Although tissue from the same cow was preferentially used at 3 phases (L1, D, L2), tissue from additional cows were used to as necessary to provide RNA of sufficient quality. Individual samples were used to generate individual RNA-seq libraries. Normalized reads of the RNA-seq data were organized into technical and biological replicates before processing with the RSEM software package. Each lactation phase was processed separately and genes that differed between any of 3 treatments were identified. A large proportion of genes differentially expressed in at least 1 treatment (n = 866) were found to be similarly expressed in BROMO and INF treatments, but differentially expressed from CON (n = 575, total for 3 phases). Of genes differentially expressed compared with CON, 104 genes were common to the L1 and L2 phases. Consistent with the production findings, networks most affected by treatments in L1 and L2 included lipid metabolism, small molecule biochemistry, and molecular transport, whereas networks related more to developmental and cellular functions and maintenance were evident during D phase. Similar patterns of expression in BROMO and INF during late and early lactation suggest involvement of similar cell signaling pathways or mechanisms of action for BROMO and INF and the importance of prolactin messaging pathways.


Assuntos
Bovinos/fisiologia , Endófitos/fisiologia , Festuca/fisiologia , Leite/metabolismo , Animais , Bovinos/genética , Bovinos/microbiologia , Dieta/veterinária , Feminino , Lactação , Período Pós-Parto , Sementes/microbiologia , Análise de Sequência de RNA/veterinária
19.
BMC Genomics ; 18(1): 527, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701198

RESUMO

BACKGROUND: Long read technologies have revolutionized de novo genome assembly by generating contigs orders of magnitude longer than that of short read assemblies. Although assembly contiguity has increased, it usually does not reconstruct a full chromosome or an arm of the chromosome, resulting in an unfinished chromosome level assembly. To increase the contiguity of the assembly to the chromosome level, different strategies are used which exploit long range contact information between chromosomes in the genome. METHODS: We develop a scalable and computationally efficient scaffolding method that can boost the assembly contiguity to a large extent using genome-wide chromatin interaction data such as Hi-C. RESULTS: we demonstrate an algorithm that uses Hi-C data for longer-range scaffolding of de novo long read genome assemblies. We tested our methods on the human and goat genome assemblies. We compare our scaffolds with the scaffolds generated by LACHESIS based on various metrics. CONCLUSION: Our new algorithm SALSA produces more accurate scaffolds compared to the existing state of the art method LACHESIS.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Algoritmos , Animais , Genômica , Cabras/genética , Humanos
20.
Immunogenetics ; 69(4): 255-269, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28180967

RESUMO

Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination.


Assuntos
Evolução Molecular , Genoma , Mamíferos/genética , Anotação de Sequência Molecular , Polimorfismo Genético/genética , Receptores de Células Matadoras Naturais/genética , Análise de Sequência de DNA/métodos , Animais , Humanos , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/genética , Filogenia , Seleção Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA