Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Anesth Analg ; 138(3): 552-561, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109495

RESUMO

BACKGROUND: Retrospective clinical trials of pulse oximeter accuracy report more frequent missed diagnoses of hypoxemia in hospitalized Black patients than White patients, differences that may contribute to racial disparities in health and health care. Retrospective studies have limitations including mistiming of blood samples and oximeter readings, inconsistent use of functional versus fractional saturation, and self-reported race used as a surrogate for skin color. Our objective was to prospectively measure the contributions of skin pigmentation, perfusion index (PI), sex, and age on pulse oximeter errors in a laboratory setting. METHODS: We enrolled 146 healthy subjects, including 25 with light skin (Fitzpatrick class I and II), 78 with medium (class III and IV), and 43 with dark (class V and VI) skin. We studied 2 pulse oximeters (Nellcor N-595 and Masimo Radical 7) in prevalent clinical use. We analyzed 9763 matched pulse oximeter readings (pulse oximeter measured functional saturation [Sp o2 ]) and arterial oxygen saturation (hemoximetry arterial functional oxygen saturation [Sa o2 ]) during stable hypoxemia (Sa o2 68%-100%). PI was measured as percent infrared light modulation by the pulse detected by the pulse oximeter probe, with low perfusion categorized as PI < 1%. The primary analysis was to assess the relationship between pulse oximeter bias (difference between Sa o2 and Sp o2 ) by skin pigment category in a multivariable mixed-effects model incorporating repeated-measures and different levels of Sa o2 and perfusion. RESULTS: Skin pigment, PI, and degree of hypoxemia significantly contributed to errors (bias) in both pulse oximeters. For PI values of 1.0% to 1.5%, 0.5% to 1.0%, and <0.5%, the P value of the relationship to mean bias or median absolute bias was <.00001. In lightly pigmented subjects, only PI was associated with positive bias, whereas in medium and dark subjects bias increased with both low perfusion and degree of hypoxemia. Sex and age was not related to pulse oximeter bias. The combined frequency of missed diagnosis of hypoxemia (pulse oximeter readings 92%-96% when arterial oxygen saturation was <88%) in low perfusion conditions was 1.1% for light, 8.2% for medium, and 21.1% for dark skin. CONCLUSIONS: Low peripheral perfusion combined with darker skin pigmentation leads to clinically significant high-reading pulse oximeter errors and missed diagnoses of hypoxemia. Darkly pigmented skin and low perfusion states are likely the cause of racial differences in pulse oximeter performance in retrospective studies.


Assuntos
Diagnóstico Ausente , Oximetria , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Hipóxia/diagnóstico , Oxigênio , Perfusão
2.
J Clin Monit Comput ; 37(6): 1441-1449, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37266710

RESUMO

Anemia and hypoxemia are common clinical conditions that are difficult to study and may impact pulse oximeter performance. Utilizing an in vitro circulation system, we studied performance of three pulse oximeters during hypoxemia and severe anemia. Three oximeters including one benchtop, one handheld, and one fingertip device were selected to reflect a range of cost and device types. Human blood was diluted to generate four hematocrit levels (40%, 30%, 20%, and 10%). Oxygen and nitrogen were bubbled through the blood to generate a range of oxygen saturations (O2Hb) and the blood was cycled through the in vitro circulation system. Pulse oximeter saturations (SpO2) were paired with simultaneously-measured O2Hb readings from a reference CO-oximeter. Data for each hematocrit level and each device were least-squares fit to a 2nd-order equation with quality of each curve fit evaluated using standard error of the estimate. Bias and average root mean square error were calculated after correcting for the calibration difference between human and in vitro circulation system calibration. The benchtop oximeter maintained good accuracy at all but the most extreme level of anemia. The handheld device was not as accurate as the benchtop, and inaccuracies increased at lower hematocrit levels. The fingertip device was the least accurate of the three oximeters. Pulse oximeter performance is impacted by severe anemia in vitro. The use of in vitro calibration systems may play an important role in augmenting in vivo performance studies evaluating pulse oximeter performance in challenging conditions.


Assuntos
Anemia , Sistema Cardiovascular , Humanos , Oximetria , Oxigênio , Hipóxia , Anemia/diagnóstico
3.
Proc Natl Acad Sci U S A ; 115(45): E10740-E10747, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348769

RESUMO

Orexin (also known as hypocretin) neurons in the hypothalamus play an essential role in sleep-wake control, feeding, reward, and energy homeostasis. The likelihood of anesthesia and sleep sharing common pathways notwithstanding, it is important to understand the processes underlying emergence from anesthesia. In this study, we investigated the role of the orexin system in anesthesia emergence, by specifically activating orexin neurons utilizing the designer receptors exclusively activated by designer drugs (DREADD) chemogenetic approach. With injection of adeno-associated virus into the orexin-Cre transgenic mouse brain, we expressed the DREADD receptor hM3Dq specifically in orexin neurons and applied the hM3Dq ligand clozapine to activate orexin neurons. We monitored orexin neuronal activities by c-Fos staining and whole-cell patch-clamp recording and examined the consequence of orexin neuronal activation via EEG recording. Our results revealed that the orexin-DREADD mice with activated orexin neurons emerged from anesthesia with significantly shorter latency than the control mice. As an indication of reduced pain sensitivity, these orexin-DREADD mice took longer to respond to the 55 °C thermal stimuli in the hot plate test and exhibited significantly less frequent licking of the formalin-injected paw in the formalin test. Our study suggests that approaches to activate the orexin system can be beneficial in postoperative recovery.


Assuntos
Período de Recuperação da Anestesia , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores de Orexina/genética , Orexinas/genética , Dor/genética , Anestésicos Inalatórios , Animais , Clozapina/farmacologia , Dependovirus/genética , Dependovirus/metabolismo , Eletroencefalografia , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Isoflurano , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Dor/fisiopatologia , Dor/prevenção & controle , Medição da Dor , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Antagonistas da Serotonina/farmacologia , Técnicas Estereotáxicas
4.
JAMA ; 331(24): 2075-2076, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38809524

RESUMO

This Viewpoint discusses the recent use of forced nitrogen inhalation as capital punishment in Alabama and describes the body of evidence indicating that forced nitrogen inhalation is an inhumane practice.


Assuntos
Pena de Morte , Nitrogênio , Humanos , Pena de Morte/legislação & jurisprudência , Estados Unidos
5.
Anesthesiology ; 128(1): 97-108, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084012

RESUMO

BACKGROUND: Cerebral oximetry (cerebral oxygen saturation; ScO2) is used to noninvasively monitor cerebral oxygenation. ScO2 readings are based on the fraction of reduced and oxidized hemoglobin as an indirect estimate of brain tissue oxygenation and assume a static ratio of arterial to venous intracranial blood. Conditions that alter cerebral blood flow, such as acute changes in PaCO2, may decrease accuracy. We assessed the performance of two commercial cerebral oximeters across a range of oxygen concentrations during normocapnia and hypocapnia. METHODS: Casmed FORE-SIGHT Elite (CAS Medical Systems, Inc., USA) and Covidien INVOS 5100C (Covidien, USA) oximeter sensors were placed on 12 healthy volunteers. The fractional inspired oxygen tension was varied to achieve seven steady-state levels including hypoxic and hyperoxic PaO2 values. ScO2 and simultaneous arterial and jugular venous blood gas measurements were obtained with both normocapnia and hypocapnia. Oximeter bias was calculated as the difference between the ScO2 and reference saturation using manufacturer-specified weighting ratios from the arterial and venous samples. RESULTS: FORE-SIGHT Elite bias was greater during hypocapnia as compared with normocapnia (4 ± 9% vs. 0 ± 6%; P < 0.001). The INVOS 5100C bias was also lower during normocapnia (5 ± 15% vs. 3 ± 12%; P = 0.01). Hypocapnia resulted in a significant decrease in mixed venous oxygen saturation and mixed venous oxygen tension, as well as increased oxygen extraction across fractional inspired oxygen tension levels (P < 0.0001). Bias increased significantly with increasing oxygen extraction (P < 0.0001). CONCLUSIONS: Changes in PaCO2 affect cerebral oximeter accuracy, and increased bias occurs with hypocapnia. Decreased accuracy may represent an incorrect assumption of a static arterial-venous blood fraction. Understanding cerebral oximetry limitations is especially important in patients at risk for hypoxia-induced brain injury, where PaCO2 may be purposefully altered.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Dióxido de Carbono/sangue , Circulação Cerebrovascular/fisiologia , Oximetria/métodos , Oxigênio/sangue , Adulto , Feminino , Humanos , Masculino , Pressão Parcial , Artéria Radial/metabolismo , Adulto Jovem
6.
Anesthesiology ; 128(3): 520-530, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29200008

RESUMO

BACKGROUND: Pulse oximeter performance is degraded by motion artifacts and low perfusion. Manufacturers developed algorithms to improve instrument performance during these challenges. There have been no independent comparisons of these devices. METHODS: We evaluated the performance of four pulse oximeters (Masimo Radical-7, USA; Nihon Kohden OxyPal Neo, Japan; Nellcor N-600, USA; and Philips Intellivue MP5, USA) in 10 healthy adult volunteers. Three motions were evaluated: tapping, pseudorandom, and volunteer-generated rubbing, adjusted to produce photoplethsmogram disturbance similar to arterial pulsation amplitude. During motion, inspired gases were adjusted to achieve stable target plateaus of arterial oxygen saturation (SaO2) at 75%, 88%, and 100%. Pulse oximeter readings were compared with simultaneous arterial blood samples to calculate bias (oxygen saturation measured by pulse oximetry [SpO2] - SaO2), mean, SD, 95% limits of agreement, and root mean square error. Receiver operating characteristic curves were determined to detect mild (SaO2 < 90%) and severe (SaO2 < 80%) hypoxemia. RESULTS: Pulse oximeter readings corresponding to 190 blood samples were analyzed. All oximeters detected hypoxia but motion and low perfusion degraded performance. Three of four oximeters (Masimo, Nellcor, and Philips) had root mean square error greater than 3% for SaO2 70 to 100% during any motion, compared to a root mean square error of 1.8% for the stationary control. A low perfusion index increased error. CONCLUSIONS: All oximeters detected hypoxemia during motion and low-perfusion conditions, but motion impaired performance at all ranges, with less accuracy at lower SaO2. Lower perfusion degraded performance in all but the Nihon Kohden instrument. We conclude that different types of pulse oximeters can be similarly effective in preserving sensitivity to clinically relevant hypoxia.


Assuntos
Hipóxia/diagnóstico , Oximetria/instrumentação , Adulto , Algoritmos , Artefatos , Feminino , Humanos , Masculino , Movimento (Física) , Oxigênio , Valores de Referência , Reprodutibilidade dos Testes , Adulto Jovem
7.
Anesth Analg ; 126(2): 579-587, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29189269

RESUMO

BACKGROUND: Currently, no reliable method exists for continuous, noninvasive measurements of absolute cerebral blood flow (CBF). We sought to determine how changes measured by ultrasound-tagged near-infrared spectroscopy (UT-NIRS) compare with changes in CBF as measured by transcranial Doppler (TCD) in healthy volunteers during profound hypocapnia and hypercapnia. METHODS: Ten healthy volunteers were monitored with a combination of TCD, UT-NIRS (c-FLOW, Ornim Medical), as well as heart rate, blood pressure, end-tidal PCO2 (PEtCO2), end-tidal O2, and inspired O2. Inspired CO2 and minute ventilation were controlled to achieve 5 stable plateau goals of EtCO2 at 15-20, 25-30, 35-40, 45-50, and 55-60 mm Hg, for a total of 7 measurements per subject. CBF was assessed at a steady state, with the TCD designated as the reference standard. The primary analysis was a linear mixed-effect model of TCD and UT-NIRS flow with PEtCO2, which accounts for repeated measures. Receiver operating characteristic curves were determined for detection of changes in CBF. RESULTS: Hyperventilation (nadir PEtCO2 17.1 ± 2.4) resulted in significantly decreased mean flow velocity of the middle cerebral artery from baseline (to 79% ± 22%), but not a consistent decrease in UT-NIRS cerebral flow velocity index (n = 10; 101% ± 6% of baseline). Hypercapnia (peak PEtCO2 59.3 ± 3.3) resulted in a significant increase from baseline in both mean flow velocity of the middle cerebral artery (153% ± 25%) and UT-NIRS (119% ± 11%). Comparing slopes versus PEtCO2 as a percent of baseline for the TCD (1.7% [1.5%-2%]) and UT-NIRS (0.4% [0.3%-0.5%]) shows that the UT-NIRS slope is significantly flatter, P < .0001. Area under the receiver operating characteristic curve was significantly higher for the TCD than for UT-NIRS, 0.97 (95% confidence interval, 0.92-0.99) versus 0.75 (95% confidence interval, 0.66-0.82). CONCLUSIONS: Our data indicate that UT-NIRS cerebral flow velocity index detects changes in CBF only during hypercarbia but not hypocarbia in healthy subjects and with much less sensitivity than TCD. Additional refinement and validation are needed before widespread clinical utilization of UT-NIRS.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ultrassonografia Doppler Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Monitorização Intraoperatória/métodos , Monitorização Intraoperatória/normas , Espectroscopia de Luz Próxima ao Infravermelho/normas , Ultrassonografia Doppler Transcraniana/normas
8.
Anesthesiology ; 136(5): 670-671, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303063

Assuntos
Oximetria , Oxigênio
9.
Anesth Analg ; 124(2): 582-587, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28099324

RESUMO

BACKGROUND: The relationship between inhalational anesthetics such as isoflurane and cognitive impairment in the elderly is controversial. Both ß-amyloid peptide (Aß), associated with Alzheimer disease, and tumor necrosis factor-α (TNF-α), a proinflammatory stress-related peptide, impair the synaptic function. We hypothesized that transient exposure to isoflurane and these peptides would impair synaptic function, manifest as a depression of long-term potentiation (LTP) and paired pulse facilitation (PPF), in the rat hippocampus. METHODS: Hippocampal slices were prepared from 3- to 4-week-old male Wistar rats. Preliminary experiments identified minimal concentrations of Aß1-42 peptide and TNF-α that produced statistically detectable suppressing effects on LTP (600 nM Aß1-42 and 5 ng/mL TNF-α). These concentrations of peptides were applied to slices alone, with 1.5% isoflurane, or in combination for 1 hour and then washed out. Measurements of LTP (field excitatory postsynaptic potentials [fEPSPs]) from neurons in the CA1 area by stimulation of the Schaffer-Collateral pathway were made after high-frequency stimulation (100 Hz, 1 second). Analysis of variance with correction for multiple comparisons was used to compare LTP under steady-state conditions and averaged for the 40- to 60-minute period after LTP induction. RESULTS: EPSP amplitude after LTP induction was 155% ± 9% of baseline and was not affected by isoflurane exposure and washout (150% ± 4% of baseline, P = .47). Both Aß1-42 and TNF-α reduced LTP by approximately 15% compared with control (129% ± 7% and 131% ± 11% of baseline respectively, means ± SD, both P < .001). When Aß1-42 was combined with isoflurane, LTP was not impaired (151% ± 9% of control, P = .85), but isoflurane had no effect on LTP depression caused by TNF-α or a combination of Aß and TNF-α. CONCLUSIONS: Brief exposure to isoflurane prevents rather than impairs the decrease in LTP caused by Aß1-42 in rat hippocampus. In contrast, isoflurane had no effect on synaptic impairment caused by TNF-α or a combination of TNF-α and Aß. Although this is an in vitro study and translation to clinical medicine requires additional work, the interactions of isoflurane, Aß, and TNF-α revealed here could have implications for patients with Alzheimer disease or perioperative neuroinflammation.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Anestésicos Inalatórios/farmacologia , Hipocampo/efeitos dos fármacos , Isoflurano/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Estimulação Elétrica , Eletroencefalografia/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos
10.
Anesth Analg ; 125(1): 124-138, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28489640

RESUMO

Implanted electronic medical devices. or stimulators such as pacemakers and nerve stimulators have grown enormously in diversity and complexity over recent decades. The function and potential interaction of these devices with the perioperative environment is of increasing concern for anesthesiologists and surgeons. Because of the innate electromagnetic environment of the hospital (operating room, gastrointestinal procedure suite, and imaging suite), implanted device malfunction, reprogramming, or destruction may occur and cause physical harm (including nerve injury, blindness, deafness, burn, stroke, paralysis, or coma) to the patient. It is critical for the anesthesiologist and surgeon to be aware of the function and interaction of implanted devices, both with other implanted devices and procedures (such as magnetic resonance imaging and cardioversion) in the hospital environment. Because of these interactions, it is imperative that proper device function is assessed when the surgical procedure is complete. This review article will discuss these important issues for 12 different types of "little black boxes," or noncardiac implantable electronic medical devices.


Assuntos
Anestesiologia/métodos , Cardioversão Elétrica/instrumentação , Eletrodos Implantados , Próteses Neurais , Assistência Perioperatória/instrumentação , Anestésicos , Desfibriladores Implantáveis , Campos Eletromagnéticos , Eletrônica , Endoscopia , Gânglios Espinais , Humanos , Imageamento por Ressonância Magnética , Marca-Passo Artificial , Segurança do Paciente , Nervo Frênico , Período Pós-Operatório , Retina , Sacro/inervação , Medula Espinal , Estimulação Elétrica Nervosa Transcutânea , Nervo Vago
11.
Anesth Analg ; 124(1): 72-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27308951

RESUMO

A number of different technologies have been developed to measure tissue oxygenation, with the goal of identifying tissue hypoxia and guiding therapy to prevent patient harm. In specific cases, tissue oximetry may provide clear indications of decreases in tissue oxygenation such as that occurring during acute brain ischemia. However, the causation between tissue hemoglobin-oxygen desaturation in one organ (eg, brain or muscle) and global outcomes such as mortality, intensive care unit length of stay, and remote organ dysfunction remains more speculative. In this review, we describe the current state of evidence for predicting clinical outcomes from tissue oximetry and identify several issues that need to be addressed to clarify the link between tissue oxygenation and outcomes. We focus primarily on the expanding use of near-infrared spectroscopy to assess a venous-weighted mixture of venous and arterial hemoglobin-oxygen saturation deep in tissues such as brain and muscle. Our analysis finds that more work is needed in several areas: establishing threshold prediction values for tissue desaturation-related injury in specific organs, defining the types of interventions required to correct changes in tissue oxygenation, and defining the effect of interventions on outcomes. Furthermore, well-designed prospective studies that test the hypothesis that monitoring oxygenation status in one organ predicts outcomes related to other organs need to be done. Finally, we call for more work that defines regional variations in tissue oxygenation and improves technology for measuring and even imaging oxygenation status in critical organs. Such studies will contribute to establishing that monitoring and imaging of tissue oxygenation will become routine in the care of high-risk patients because the monitors will provide outputs that direct therapy to improve clinical outcomes.


Assuntos
Hipóxia/diagnóstico , Monitorização Intraoperatória/métodos , Oximetria/métodos , Consumo de Oxigênio , Oxigênio/sangue , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Biomarcadores/sangue , Desenho de Equipamento , Humanos , Hipóxia/sangue , Hipóxia/etiologia , Hipóxia/terapia , Monitorização Intraoperatória/instrumentação , Oximetria/instrumentação , Oxiemoglobinas/metabolismo , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Fatores de Risco
12.
Anesth Analg ; 124(1): 146-153, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27529318

RESUMO

Extended periods of oxygen deprivation can produce acidosis, inflammation, energy failure, cell stress, or cell death. However, brief profound hypoxia (here defined as SaO2 50%-70% for approximately 10 minutes) is not associated with cardiovascular compromise and is tolerated by healthy humans without apparent ill effects. In contrast, chronic hypoxia induces a suite of adaptations and stresses that can result in either increased tolerance of hypoxia or disease, as in adaptation to altitude or in the syndrome of chronic mountain sickness. In healthy humans, brief profound hypoxia produces increased minute ventilation and increased cardiac output, but little or no alteration in blood chemistry. Central nervous system effects of acute profound hypoxia include transiently decreased cognitive performance, based on alterations in attention brought about by interruptions of frontal/central cerebral connectivity. However, provided there is no decrease in cardiac output or ischemia, brief profound hypoxemia in healthy humans is well tolerated without evidence of acidosis or lasting cognitive impairment.


Assuntos
Hipóxia/diagnóstico , Oximetria , Oxigênio/sangue , Acidose/etiologia , Acidose/fisiopatologia , Doença Aguda , Adaptação Fisiológica , Animais , Atenção , Biomarcadores/sangue , Encéfalo/fisiopatologia , Débito Cardíaco , Cognição , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Modelos Animais de Doenças , Humanos , Hipóxia/sangue , Hipóxia/complicações , Hipóxia/fisiopatologia , Valor Preditivo dos Testes , Ventilação Pulmonar , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo
15.
Anesth Analg ; 122(6): 1856-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111642

RESUMO

BACKGROUND: Pulse spectroscopy is a new noninvasive technology involving hundreds of wavelengths of visible and infrared light, enabling the simultaneous quantitation of multiple types of normal and dysfunctional hemoglobin. We evaluated the accuracy of a first-generation pulse spectroscopy system (V-Spec™ Monitoring System, Senspec, Germany) in measuring oxygen saturation (SpO2) and detecting carboxyhemoglobin (COHb) or methemoglobin (MetHb), alone or simultaneously, with hypoxemia. METHODS: Nineteen volunteers were fitted with V-Spec probes on the forehead and fingers. A radial arterial catheter was placed for blood sampling during (1) hypoxemia with arterial oxygen saturations (SaO2) of 100% to 58.5%; (2) normoxia with MetHb and COHb increased to approximately 10%; (3) 10% COHb or MetHb combined with hypoxemia with SaO2 of 100% to 80%. Standard measures of pulse-oximetry performance were calculated: bias (pulse spectroscopy measured value - arterial measured value) mean ± SD and root-mean-square error (Arms). RESULTS: The SpO2 bias for SaO2 approximately 60% to 100% was 0.06% ± 1.30% and Arms of 1.30%. COHb bias was 0.45 ± 1.63, with an Arms of 1.69% overall, and did not degrade substantially during moderate hypoxemia. MetHb bias was 0.36 ± 0.80 overall and stayed small with hypoxemia. Arms was 0.88 and was <3% at all levels of SaO2 and MetHb. Hypoxemia was also accurately detected by pulse spectroscopy at elevated levels of COHb. At elevated MetHb levels, a substantial negative bias developed, -10.3 at MetHb >10%. CONCLUSIONS: Pulse spectroscopy accurately detects hypoxemia, MetHb, and COHb. The technology also accurately detects these dysfunctional hemoglobins during hypoxemia. Future releases of this device may have an improved SpO2 algorithm that is more robust with methemoglobinemia.


Assuntos
Carboxihemoglobina/metabolismo , Hipóxia/diagnóstico , Metemoglobina/metabolismo , Oximetria/métodos , Oxigênio/sangue , Adulto , Algoritmos , Biomarcadores/sangue , Feminino , Humanos , Hipóxia/sangue , Masculino , Oximetria/instrumentação , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Análise Espectral , Fatores de Tempo , Adulto Jovem
16.
Anesth Analg ; 123(2): 338-45, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27089002

RESUMO

BACKGROUND: Universal access to pulse oximetry worldwide is often limited by cost and has substantial public health consequences. Low-cost pulse oximeters have become increasingly available with limited regulatory agency oversight. The accuracy of these devices often has not been validated, raising questions about performance. METHODS: The accuracy of 6 low-cost finger pulse oximeters during stable arterial oxygen saturations (SaO2) between 70% and 100% was evaluated in 22 healthy subjects. Oximeters tested were the Contec CMS50DL, Beijing Choice C20, Beijing Choice MD300C23, Starhealth SH-A3, Jumper FPD-500A, and Atlantean SB100 II. Inspired oxygen, nitrogen, and carbon dioxide partial pressures were monitored and adjusted via a partial rebreathing circuit to achieve 10 to 12 stable target SaO2 plateaus between 70% and 100% and PaCO2 values of 35 to 45 mm Hg. Comparisons of pulse oximeter readings (SpO2) with arterial SaO2 (by Radiometer ABL90 and OSM3) were used to calculate bias (SpO2 - SaO2) mean, precision (SD of the bias), and root mean square error (ARMS). RESULTS: Pulse oximeter readings corresponding to 536 blood samples were analyzed. Four of the 6 oximeters tested showed large errors (up to -6.30% mean bias, precision 4.30%, 7.53 ARMS) in estimating saturation when SaO2 was reduced <80%, and half of the oximeters demonstrated large errors when estimating saturations between 80% and 90%. Two of the pulse oximeters tested (Contec CMS50DL and Beijing Choice C20) demonstrated ARMS of <3% at SaO2 between 70% and 100%, thereby meeting International Organization for Standardization (ISO) criteria for accuracy. CONCLUSIONS: Many low-cost pulse oximeters sold to consumers demonstrate highly inaccurate readings. Unexpectedly, the accuracy of some low-cost pulse oximeters tested here performed similarly to more expensive, ISO-cleared units when measuring hypoxia in healthy subjects. None of those tested here met World Federation of Societies of Anaesthesiologists standards, and the ideal testing conditions do not necessarily translate these findings to the clinical setting. Nonetheless, further development of accurate, low-cost oximeters for use in clinical practice is feasible and, if pursued, could improve access to safe care, especially in low-income countries.


Assuntos
Aprovação de Equipamentos , Saúde Global , Oximetria/instrumentação , Oxigênio/sangue , United States Food and Drug Administration , Adulto , Biomarcadores/sangue , Desenho de Equipamento , Feminino , Saúde Global/economia , Custos de Cuidados de Saúde , Voluntários Saudáveis , Humanos , Masculino , Teste de Materiais , Oximetria/economia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estados Unidos
17.
EBioMedicine ; 102: 105051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458110

RESUMO

BACKGROUND: Fingertip pulse oximeters are widely available, inexpensive, and commonly used to make clinical decisions in many settings. Device performance is largely unregulated and poorly characterised, especially in people with dark skin pigmentation. METHODS: Eleven popular fingertip pulse oximeters were evaluated using the US Food and Drug Administration (FDA) Guidance (2013) and International Organization for Standardization Standards (ISO, 2017) in 34 healthy humans with diverse skin pigmentation utilising a controlled desaturation study with arterial oxygen saturation (SaO 2) plateaus between 70% and 100%. Skin pigmentation was assessed subjectively using a perceived Fitzpatrick Scale (pFP) and objectively using the individual typology angle (ITA) via spectrophotometry at nine anatomical sites. FINDINGS: Five of 11 devices had a root mean square error (ARMS) > 3%, falling outside the acceptable FDA performance range. Nine devices demonstrated worse performance in participants in the darkest skin pigmentation category compared with those in the lightest category. A commonly used subjective skin colour scale frequently miscategorised participants as being darkly pigmented when compared to objective quantification of skin pigment by ITA. INTERPRETATION: Fingertip pulse oximeters have variable performance, frequently not meeting regulatory requirements for clinical use, and occasionally contradicting claims made by manufacturers. Most devices showed a trend toward worse performance in participants with darker skin pigment. Regulatory standards do not adequately account for the impact of skin pigmentation on device performance. We recommend that the pFP and other non-standardised subjective skin colour scales should no longer be used for defining diversity of skin pigmentation. Reliable methods for characterising skin pigmentation to improve diversity and equitable performance of pulse oximeters are needed. FUNDING: This study was conducted as part of the Open Oximetry Project funded by the Gordon and Betty Moore Foundation, Patrick J McGovern Foundation, and Robert Wood Johnson Foundation. The UCSF Hypoxia Research Laboratory receives funding from multiple industry sponsors to test the sponsors' devices for the purposes of product development and regulatory performance testing. Data in this paper do not include sponsor's study devices. All data were collected from devices procured by the Hypoxia Research Laboratory for the purposes of independent research. No company provided any direct funding for this study, participated in study design or analysis, or was involved in analysing data or writing the manuscript. None of the authors own stock or equity interests in any pulse oximeter companies. Dr Ellis Monk's time utilised for data analysis, reviewing and editing was funded by grant number: DP2MH132941.


Assuntos
Oximetria , Oxigênio , Humanos , Oximetria/métodos , Hipóxia/diagnóstico , Pigmentação da Pele , Voluntários Saudáveis
18.
Anesthesiology ; 119(2): 335-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23591069

RESUMO

BACKGROUND: Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. METHODS: Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. RESULTS: Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P < 0.01; ANOVA with Dunnett test). Both isoflurane and sevoflurane increased neuron death at 1 but not 2 MAC. At 1 MAC, the increase in cell death compared with controls was 63% with isoflurane and 90% with sevoflurane (both P < 0.001). Pretreatment of cultures with isoflurane (0.75 MAC) reduced neuron death after 1 MAC xenon, isoflurane, and sevoflurane. CONCLUSION: Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.


Assuntos
Anestésicos Inalatórios/toxicidade , Hipocampo/efeitos dos fármacos , Isoflurano/toxicidade , Éteres Metílicos/toxicidade , Xenônio/toxicidade , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Sevoflurano
19.
Anesth Analg ; 117(4): 813-823, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24023027

RESUMO

BACKGROUND: Cerebral oximetry is a noninvasive optical technology that measures frontal cortex blood hemoglobin-oxygen saturation. Commercially available cerebral oximeters have not been evaluated independently. Unlike pulse oximeters, there are currently no Food and Drug Administration standards for performance or accuracy. We tested the hypothesis that cerebral oximeters accurately measure a fixed ratio of the oxygen saturation in cerebral mixed venous and arterial blood. METHODS: We evaluated the performance of 5 commercially available cerebral oximeters: the EQUANOX® 7600 in 3- and 4-wavelength versions (Nonin Medical, Plymouth, MN), FORE-SIGHT® (Casmed, Branford, CT), INVOS® 5100C (Covidien, Boulder, CO), and the NIRO-200NX® (Hamamatsu Photonics, Hamamatsu City, Japan) during stable isocapnic hypoxia in volunteers. Twenty-three healthy adults (14 men, 9 women) had sensors placed on each side of the forehead. The subject's inspired oxygen (FIO2) was then changed to produce 6 steady-state arterial oxygen saturation (SaO2) levels between 100% and 70%, while end-tidal CO2 was maintained constant. At each plateau, simultaneous blood samples from the jugular bulb and radial artery were analyzed with a hemoximeter (OSM-3, Radiometer Medical A/S, Copenhagen, Denmark). Each cerebral oximeter's bias was calculated as the difference between the instrument's reading (cerebral saturation, ScO2) with the weighted saturation of venous and arterial blood (Sa/vO2), as specified by each manufacturer (INVOS: 25% arterial/75% venous; FORE-SIGHT, EQUANOX, and NIRO: 30% arterial/70% venous). RESULTS: Five hundred forty-two comparisons between paired blood samples and oximeter readings were analyzed. The pooled root mean square error was 8.06%, a value higher than for pulse oximeters, which is ±3% by Food and Drug Administration standards. The mean % bias ± SD (precision) and root mean square errors were: FORE-SIGHT 1.76 ± 3.92 and 4.28; INVOS 0.05 ± 9.72 and 9.69; NIRO-200NX -1.13 ± 9.64 and 9.68; EQUANOX-3 λ 2.48 ± 8.12 and 8.47; EQUANOX-4 λ 2.84 ± 6.27 and 6.86. The FORE-SIGHT, NIRO-200NX, and EQUANOX-3 λ had significantly more positive bias at lower SaO2. The amount of bias during hypoxia was reduced when the bias was calculated on the basis of difference between oximeter reading and the arterial and mixed venous saturation difference rather than the weighted average of blood saturation, indicating that differences in the ratio between arterial and venous blood volumes account for some of the positive bias at low saturation. Dark skin pigment tended to produce more negative bias in all instruments but bias was significantly larger than zero only for the FORE-SIGHT oximeter. Bias was significantly more negative in women for INVOS and EQUANOX devices but not for the FORE-SIGHT device. CONCLUSIONS: While responsive to desaturation, cerebral oximeters exhibited large variation in reading errors between subjects, with mean bias possibly related to variations in the ratio of arterial and venous blood in the sampling area of the brain. This ratio is probably not fixed, as assumed by the manufacturers, but dynamically changes with hypoxia. Better understanding these factors could improve the performance of cerebral oximeters and help establish saturation or blood flow thresholds for brain well-being.


Assuntos
Hipóxia/sangue , Oximetria/instrumentação , Oximetria/métodos , Adulto , Encéfalo/metabolismo , Feminino , Humanos , Hipóxia/diagnóstico , Masculino , Pessoa de Meia-Idade , Oximetria/normas , Consumo de Oxigênio , Fatores Sexuais , Pigmentação da Pele/fisiologia , Adulto Jovem
20.
Anesth Analg ; 117(4): 847-858, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23477959

RESUMO

BACKGROUND: Carbon monoxide poisoning is a significant problem in most countries, and a reliable method of quick diagnosis would greatly improve patient care. Until the recent introduction of a multiwavelength "pulse CO-oximeter" (Masimo Rainbow SET(®) Radical-7), obtaining carboxyhemoglobin (COHb) levels in blood required blood sampling and laboratory analysis. In this study, we sought to determine whether hypoxemia, which can accompany carbon monoxide poisoning, interferes with the accurate detection of COHb. METHODS: Twelve healthy, nonsmoking, adult volunteers were fitted with 2 standard pulse-oximeter finger probes and 2 Rainbow probes for COHb detection. A radial arterial catheter was placed for blood sampling during 3 interventions: (1) increasing hypoxemia in incremental steps with arterial oxygen saturations (SaO2) of 100% to 80%; (2) normoxia with incremental increases in %COHb to 12%; and (3) elevated COHb combined with hypoxemia with SaO2 of 100% to 80%. Pulse-oximeter (SpCO) readings were compared with simultaneous arterial blood values at the various increments of hypoxemia and carboxyhemoglobinemia (≈25 samples per subject). Pulse CO-oximeter performance was analyzed by calculating the mean bias (SpCO - %COHb), standard deviation of the bias (precision), and the root-mean-square error (A(rms)). RESULTS: The Radical-7 accurately detected hypoxemia with both normal and elevated levels of COHb (bias mean ± SD: 0.44% ± 1.69% at %COHb <4%, and -0.29% ± 1.64% at %COHb ≥4%, P < 0.0001, and A(rms) 1.74% vs 1.67%). COHb was accurately detected during normoxia and moderate hypoxia (bias mean ± SD: -0.98 ± 2.6 at SaO2 ≥95%, and -0.7 ± 4.0 at SaO2 <95%, P = 0.60, and A(rms) 2.8% vs 4.0%), but when SaO2 decreased below approximately 85%, the pulse CO-oximeter always gave low signal quality errors and did not report SpCO values. CONCLUSIONS: In healthy volunteers, the Radical-7 pulse CO-oximeter accurately detects hypoxemia with both low and elevated COHb levels, and accurately detects COHb, but only reads SpCO when SaO2 is more than approximately 85%.


Assuntos
Carboxihemoglobina/metabolismo , Hipóxia/sangue , Oximetria/métodos , Oximetria/normas , Adolescente , Adulto , Intoxicação por Monóxido de Carbono/diagnóstico , Feminino , Humanos , Hipóxia/diagnóstico , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA