Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Biol ; 17(6): e3000294, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158217

RESUMO

A morphospecies is defined as a taxonomic species based wholly on morphology, but often morphospecies consist of clusters of cryptic species that can be identified genetically or molecularly. The nature of the evolutionary novelty that accompanies speciation in a morphospecies is an intriguing question. Morphospecies are particularly common among ciliates, a group of unicellular eukaryotes that separates 2 kinds of nuclei-the silenced germline nucleus (micronucleus [MIC]) and the actively expressed somatic nucleus (macronucleus [MAC])-within a common cytoplasm. Because of their very similar morphologies, members of the Tetrahymena genus are considered a morphospecies. We explored the hidden genomic evolution within this genus by performing a comprehensive comparative analysis of the somatic genomes of 10 species and the germline genomes of 2 species of Tetrahymena. These species show high genetic divergence; phylogenomic analysis suggests that the genus originated about 300 million years ago (Mya). Seven universal protein domains are preferentially included among the species-specific (i.e., the youngest) Tetrahymena genes. In particular, leucine-rich repeat (LRR) genes make the largest contribution to the high level of genome divergence of the 10 species. LRR genes can be sorted into 3 different age groups. Parallel evolutionary trajectories have independently occurred among LRR genes in the different Tetrahymena species. Thousands of young LRR genes contain tandem arrays of exactly 90-bp exons. The introns separating these exons show a unique, extreme phase 2 bias, suggesting a clonal origin and successive expansions of 90-bp-exon LRR genes. Identifying LRR gene age groups allowed us to document a Tetrahymena intron length cycle. The youngest 90-bp exon LRR genes in T. thermophila are concentrated in pericentromeric and subtelomeric regions of the 5 micronuclear chromosomes, suggesting that these regions act as genome innovation centers. Copies of a Tetrahymena Long interspersed element (LINE)-like retrotransposon are very frequently found physically adjacent to 90-bp exon/intron repeat units of the youngest LRR genes. We propose that Tetrahymena species have used a massive exon-shuffling mechanism, involving unequal crossing over possibly in concert with retrotransposition, to create the unique 90-bp exon array LRR genes.


Assuntos
Genômica/métodos , Especificidade da Espécie , Tetrahymena/genética , Evolução Biológica , Evolução Molecular , Éxons , Genoma de Protozoário , Íntrons , Proteínas de Repetições Ricas em Leucina , Filogenia , Proteínas/genética , Tetrahymena/metabolismo
2.
Nature ; 480(7378): 520-4, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22089132

RESUMO

Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.


Assuntos
Evolução Biológica , Genoma de Planta , Medicago truncatula/genética , Medicago truncatula/microbiologia , Rhizobium/fisiologia , Simbiose , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Glycine max/genética , Sintenia , Vitis/genética
3.
Plant Cell Physiol ; 56(1): e1, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432968

RESUMO

Medicago truncatula, a close relative of alfalfa (Medicago sativa), is a model legume used for studying symbiotic nitrogen fixation, mycorrhizal interactions and legume genomics. J. Craig Venter Institute (JCVI; formerly TIGR) has been involved in M. truncatula genome sequencing and annotation since 2002 and has maintained a web-based resource providing data to the community for this entire period. The website (http://www.MedicagoGenome.org) has seen major updates in the past year, where it currently hosts the latest version of the genome (Mt4.0), associated data and legacy project information, presented to users via a rich set of open-source tools. A JBrowse-based genome browser interface exposes tracks for visualization. Mutant gene symbols originally assembled and curated by the Frugoli lab are now hosted at JCVI and tie into our community annotation interface, Medicago EuCAP (to be integrated soon with our implementation of WebApollo). Literature pertinent to M. truncatula is indexed and made searchable via the Textpresso search engine. The site also implements MedicMine, an instance of InterMine that offers interconnectivity with other plant 'mines' such as ThaleMine and PhytoMine, and other model organism databases (MODs). In addition to these new features, we continue to provide keyword- and locus identifier-based searches served via a Chado-backed Tripal Instance, a BLAST search interface and bulk downloads of data sets from the iPlant Data Store (iDS). Finally, we maintain an E-mail helpdesk, facilitated by a JIRA issue tracking system, where we receive and respond to questions about the website and requests for specific data sets from the community.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Genoma de Planta/genética , Medicago truncatula/genética , Interface Usuário-Computador , Armazenamento e Recuperação da Informação , Internet
4.
Nat Methods ; 9(4): 345-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22453911

RESUMO

The International Molecular Exchange (IMEx) consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website (http://www.imexconsortium.org/). Common curation rules have been developed, and a central registry is used to manage the selection of articles to enter into the dataset. We discuss the advantages of such a service to the user, our quality-control measures and our data-distribution practices.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas , Proteínas/metabolismo , Publicações Periódicas como Assunto , Ligação Proteica , Proteínas/química , Controle de Qualidade
5.
BMC Genomics ; 15: 312, 2014 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-24767513

RESUMO

BACKGROUND: Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation, symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on a BAC tiling path, culminating in a BAC-based assembly (Mt3.5) as well as an in-depth analysis of the genome published in 2011. RESULTS: Here we describe a further improved and refined version of the M. truncatula genome (Mt4.0) based on de novo whole genome shotgun assembly of a majority of Illumina and 454 reads using ALLPATHS-LG. The ALLPATHS-LG scaffolds were anchored onto the pseudomolecules on the basis of alignments to both the optical map and the genotyping-by-sequencing (GBS) map. The Mt4.0 pseudomolecules encompass ~360 Mb of actual sequences spanning 390 Mb of which ~330 Mb align perfectly with the optical map, presenting a drastic improvement over the BAC-based Mt3.5 which only contained 70% sequences (~250 Mb) of the current version. Most of the sequences and genes that previously resided on the unanchored portion of Mt3.5 have now been incorporated into the Mt4.0 pseudomolecules, with the exception of ~28 Mb of unplaced sequences. With regard to gene annotation, the genome has been re-annotated through our gene prediction pipeline, which integrates EST, RNA-seq, protein and gene prediction evidences. A total of 50,894 genes (31,661 high confidence and 19,233 low confidence) are included in Mt4.0 which overlapped with ~82% of the gene loci annotated in Mt3.5. Of the remaining genes, 14% of the Mt3.5 genes have been deprecated to an "unsupported" status and 4% are absent from the Mt4.0 predictions. CONCLUSIONS: Mt4.0 and its associated resources, such as genome browsers, BLAST-able datasets and gene information pages, can be found on the JCVI Medicago web site (http://www.jcvi.org/medicago). The assembly and annotation has been deposited in GenBank (BioProject: PRJNA10791). The heavily curated chromosomal sequences and associated gene models of Medicago will serve as a better reference for legume biology and comparative genomics.


Assuntos
Genoma de Planta , Medicago truncatula/genética , Cromossomos Artificiais Bacterianos
6.
Nature ; 455(7214): 757-63, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18843361

RESUMO

The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.


Assuntos
Genoma de Protozoário/genética , Genômica , Malária Vivax/parasitologia , Plasmodium vivax/genética , Motivos de Aminoácidos , Animais , Artemisininas/metabolismo , Artemisininas/farmacologia , Atovaquona/metabolismo , Atovaquona/farmacologia , Núcleo Celular/genética , Cromossomos/genética , Sequência Conservada/genética , Eritrócitos/parasitologia , Evolução Molecular , Haplorrinos/parasitologia , Humanos , Isocoros/genética , Ligantes , Malária Vivax/metabolismo , Família Multigênica , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/patogenicidade , Plasmodium vivax/fisiologia , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia/genética
7.
Genome Biol ; 25(1): 60, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409096

RESUMO

Assembled genome sequences are being generated at an exponential rate. Here we present FCS-GX, part of NCBI's Foreign Contamination Screen (FCS) tool suite, optimized to identify and remove contaminant sequences in new genomes. FCS-GX screens most genomes in 0.1-10 min. Testing FCS-GX on artificially fragmented genomes demonstrates high sensitivity and specificity for diverse contaminant species. We used FCS-GX to screen 1.6 million GenBank assemblies and identified 36.8 Gbp of contamination, comprising 0.16% of total bases, with half from 161 assemblies. We updated assemblies in NCBI RefSeq to reduce detected contamination to 0.01% of bases. FCS-GX is available at https://github.com/ncbi/fcs/ or https://doi.org/10.5281/zenodo.10651084 .


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma , Software
8.
bioRxiv ; 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37292984

RESUMO

Assembled genome sequences are being generated at an exponential rate. Here we present FCS-GX, part of NCBI's Foreign Contamination Screen (FCS) tool suite, optimized to identify and remove contaminant sequences in new genomes. FCS-GX screens most genomes in 0.1-10 minutes. Testing FCS-GX on artificially fragmented genomes demonstrates sensitivity >95% for diverse contaminant species and specificity >99.93%. We used FCS-GX to screen 1.6 million GenBank assemblies and identified 36.8 Gbp of contamination (0.16% of total bases), with half from 161 assemblies. We updated assemblies in NCBI RefSeq to reduce detected contamination to 0.01% of bases. FCS-GX is available at https://github.com/ncbi/fcs/.

9.
BMC Genomics ; 11: 374, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20540747

RESUMO

BACKGROUND: The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence fiscally and technically problematic. To selectively obtain gene-enriched regions of this tick's genome, Cot filtration was performed, and Cot-filtered DNA was sequenced via 454 FLX pyrosequencing. RESULTS: The sequenced Cot-filtered genomic DNA was assembled with an EST-based gene index of 14,586 unique entries where each EST served as a potential "seed" for scaffold formation. The new sequence assembly extended the lengths of 3,913 of the 14,586 gene index entries. Over half of the extensions corresponded to extensions of over 30 amino acids. To survey the repetitive elements in the tick genome, the complete sequences of five BAC clones were determined. Both Class I and II transposable elements were found. Comparison of the BAC and Cot filtration data indicates that Cot filtration was highly successful in filtering repetitive DNA out of the genomic DNA used in 454 sequencing. CONCLUSION: Cot filtration is a very useful strategy to incorporate into genome sequencing projects on organisms with large genome sizes and which contain high percentages of repetitive, difficult to assemble, genomic DNA. Combining the Cot selection approach with 454 sequencing and assembly with a pre-existing EST database as seeds resulted in extensions of 27% of the members of the EST database.


Assuntos
Genoma/genética , Rhipicephalus/genética , Análise de Sequência de DNA/métodos , Animais , Bovinos , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , DNA Complementar/genética , Genômica , Cinética , Hibridização de Ácido Nucleico
10.
PLoS Pathog ; 3(10): 1401-13, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17953480

RESUMO

Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The approximately 150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.


Assuntos
Babesia bovis/genética , DNA de Protozoário/análise , Genes de Protozoários , Plasmodium falciparum/genética , Theileria parva/genética , Animais , Antígenos de Protozoários/imunologia , Babesia bovis/imunologia , Babesia bovis/metabolismo , Babesiose/parasitologia , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Cromossomos , DNA Complementar/análise , Evolução Molecular , Biblioteca Genômica , Dados de Sequência Molecular , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia , Theileria parva/imunologia , Theileria parva/metabolismo
11.
Elife ; 52016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892853

RESUMO

The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.


Assuntos
Rearranjo Gênico , Genoma de Protozoário , Tetrahymena thermophila/genética , Análise de Sequência de DNA
12.
Nat Commun ; 7: 10507, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26856261

RESUMO

Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.


Assuntos
Anaplasma phagocytophilum , Vetores Aracnídeos/genética , Genoma/genética , Ixodes/genética , Canais Iônicos de Abertura Ativada por Ligante/genética , Animais , Perfilação da Expressão Gênica , Genômica , Doença de Lyme/transmissão , Oócitos , Xenopus laevis
13.
Genome Biol ; 15(6): R77, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24916971

RESUMO

BACKGROUND: Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus. RESULTS: We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event. CONCLUSIONS: Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.


Assuntos
Brassica/genética , Genoma de Planta , Transcriptoma , Aneuploidia , Brassica/metabolismo , Mapeamento Cromossômico , Metilação de DNA , Epigênese Genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA
14.
Science ; 330(6000): 86-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20929810

RESUMO

Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.


Assuntos
Cromossomos/genética , Culex/genética , Genes de Insetos , Genoma , Análise de Sequência de DNA , Aedes/genética , Animais , Anopheles/genética , Mapeamento Cromossômico , Culex/classificação , Culex/fisiologia , Elementos de DNA Transponíveis , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Insetos Vetores/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Receptores Odorantes/genética , Retroelementos
15.
Science ; 316(5832): 1718-23, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17510324

RESUMO

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.


Assuntos
Aedes/genética , Genoma de Inseto , Insetos Vetores/genética , Aedes/metabolismo , Animais , Anopheles/genética , Anopheles/metabolismo , Arbovírus , Sequência de Bases , Elementos de DNA Transponíveis , Dengue/prevenção & controle , Dengue/transmissão , Drosophila melanogaster/genética , Feminino , Genes de Insetos , Humanos , Proteínas de Insetos/genética , Insetos Vetores/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Família Multigênica , Estrutura Terciária de Proteína/genética , Análise de Sequência de DNA , Caracteres Sexuais , Processos de Determinação Sexual , Especificidade da Espécie , Sintenia , Transcrição Gênica , Febre Amarela/prevenção & controle , Febre Amarela/transmissão
16.
Science ; 315(5809): 207-12, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17218520

RESUMO

We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.


Assuntos
Genoma de Protozoário , Análise de Sequência de DNA , Trichomonas vaginalis/genética , Animais , Transporte Biológico/genética , Elementos de DNA Transponíveis , DNA de Protozoário/genética , Transferência Genética Horizontal , Genes de Protozoários , Humanos , Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Família Multigênica , Organelas/metabolismo , Estresse Oxidativo/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Processamento Pós-Transcricional do RNA , Sequências Repetitivas de Ácido Nucleico , Infecções Sexualmente Transmissíveis/parasitologia , Tricomoníase/parasitologia , Tricomoníase/transmissão , Trichomonas vaginalis/citologia , Trichomonas vaginalis/metabolismo , Trichomonas vaginalis/patogenicidade
17.
Mol Biol Evol ; 22(1): 126-34, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15371525

RESUMO

Mariner transposable elements encoding a D,D34D motif-bearing transposase are characterized by their pervasiveness among, and exclusivity to, animal phyla. To date, several hundred sequences have been obtained from taxa ranging from cnidarians to humans, only two of which are known to be functional. Related transposons have been identified in plants and fungi, but their absence among protists is noticeable. Here, we identify and characterize Tvmar1, the first representative of the mariner family to be found in a species of protist, the human parasite Trichomonas vaginalis. This is the first D,D34D element to be found outside the animal kingdom, and its inclusion in the mariner family is supported by both structural and phylogenetic analyses. Remarkably, Tvmar1 has all the hallmarks of a functional element and has recently expanded to several hundred copies in the genome of T. vaginalis. Our results show that a new potentially active mariner has been found that belongs to a distinct mariner lineage and has successfully invaded a nonanimal, single-celled organism. The considerable genetic distance between Tvmar1 and other mariners may have valuable implications for the design of new, high-efficiency vectors to be used in transfection studies in protists.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Evolução Molecular , Seleção Genética , Transposases/genética , Trichomonas vaginalis/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Genoma , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
18.
PLoS Pathog ; 1(4): e44, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16389297

RESUMO

Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs) revealed a core set of 4,500 Plasmodium orthologs located in the highly syntenic central regions of the chromosomes that sharply defined the boundaries of the variable subtelomeric regions. We used composite RMP contigs, based on partial DNA sequences of three RMPs, to generate a whole-genome synteny map of P. falciparum and the RMPs. The core regions of the 14 chromosomes of P. falciparum and the RMPs are organized in 36 synteny blocks, representing groups of genes that have been stably inherited since these malaria species diverged, but whose relative organization has altered as a result of a predicted minimum of 15 recombination events. P. falciparum-specific genes and gene families are found in the variable subtelomeric regions (575 genes), at synteny breakpoints (42 genes), and as intrasyntenic indels (126 genes). Of the 168 non-subtelomeric P. falciparum genes, including two newly discovered gene families, 68% are predicted to be exported to the surface of the blood stage parasite or infected erythrocyte. Chromosomal rearrangements are implicated in the generation and dispersal of P. falciparum-specific gene families, including one encoding receptor-associated protein kinases. The data show that both synteny breakpoints and intrasyntenic indels can be foci for species-specific genes with a predicted role in host-parasite interactions and suggest that, besides rearrangements in the subtelomeric regions, chromosomal rearrangements may also be involved in the generation of species-specific gene families. A majority of these genes are expressed in blood stages, suggesting that the vertebrate host exerts a greater selective pressure than the mosquito vector, resulting in the acquisition of diversity.


Assuntos
Genes de Protozoários , Genoma , Plasmodium falciparum/genética , Plasmodium/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Sequência Conservada , Humanos , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Plasmodium/classificação , Plasmodium falciparum/patogenicidade , Especificidade da Espécie
19.
Eur J Immunol ; 35(6): 1859-68, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15864779

RESUMO

Duffy antigen is the receptor used by Plasmodium vivax to invade erythrocytes. Consequently, individuals lacking Duffy antigen [Fy(-)] do not develop blood-stage infections. We hypothesized that naturally exposed Fy(-) humans may develop immune responses mainly to pre-erythrocytic stages and could be used to study acquired immunity to P. vivax and to identify liver-stage antigens. We report here that antibody and IFN-gamma responses to known sporozoite antigens were significantly induced by natural exposure in Fy(-) humans, whereas responses to blood-stage antigens were significantly induced in Fy(+) humans. IFN-gamma responses to sporozoite antigens were lower in Fy(+) than in Fy(-) humans, indicating that in Fy(+) humans blood-stage infections may have suppressed T cell responses to pre-erythrocytic stages. We evaluated the immune responses to 18 novel P. vivax homologs of P. falciparum sporozoite proteins identified from the P. vivax genome sequence. Eight proteins recalled IFN-gamma responses in P. vivax-exposed but not in unexposed individuals. Of these, 3 antigens elicited IFN-gamma responses in Fy(-) but not in Fy(+) individuals. These results suggest that differential immune responses observed in naturally exposed Fy(-) and Fy(+) individuals can be exploited to identify P. vivax stage-specific antigens.


Assuntos
Antígenos de Protozoários/imunologia , Sistema do Grupo Sanguíneo Duffy/análise , Eritrócitos/parasitologia , Fígado/parasitologia , Plasmodium vivax/imunologia , Adulto , Animais , Reações Cruzadas , Feminino , Genoma de Protozoário , Humanos , Interferon gama/biossíntese , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/genética
20.
Science ; 307(5706): 82-6, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15637271

RESUMO

Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.


Assuntos
Genoma de Protozoário , Estágios do Ciclo de Vida , Plasmodium/crescimento & desenvolvimento , Plasmodium/genética , Proteoma/análise , Regiões 3' não Traduzidas , Animais , Anopheles/parasitologia , Biologia Computacional , Evolução Molecular , Perfilação da Expressão Gênica , Inativação Gênica , Genes de Protozoários , Malária/parasitologia , Análise de Sequência com Séries de Oligonucleotídeos , Plasmodium/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium chabaudi/genética , Plasmodium chabaudi/crescimento & desenvolvimento , Plasmodium chabaudi/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium yoelii/genética , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Proteômica , Proteínas de Protozoários/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Seleção Genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA