Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(6): 065702, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006281

RESUMO

Vacancy-ordered transition metal oxides have multiple similarities to classical ferroic systems including ferroelectrics and ferroelastics. The expansion coefficients for corresponding Ginzburg-Landau-type free energies are readily accessible from bulk phase diagrams. Here, we demonstrate that the gradient and interfacial terms can quantitatively be determined from the atomically resolved scanning transmission electron microscopy data of the topological defects and interfaces in model lanthanum-strontium cobaltite. With this knowledge, the interplay between ordering, chemical composition, and mechanical effects at domain walls, interfaces and structural defects can be analyzed.

2.
Phys Rev Lett ; 104(19): 197601, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866998

RESUMO

Biaxial strain is known to induce ferroelectricity in thin films of nominally nonferroelectric materials such as SrTiO3. By a direct comparison of the strained and strain-free SrTiO3 films using dielectric, ferroelectric, Raman, nonlinear optical and nanoscale piezoelectric property measurements, we conclude that all SrTiO3 films and bulk crystals are relaxor ferroelectrics, and the role of strain is to stabilize longer-range correlation of preexisting nanopolar regions, likely originating from minute amounts of unintentional Sr deficiency in nominally stoichiometric samples. These findings highlight the sensitive role of stoichiometry when exploring strain and epitaxy-induced electronic phenomena in oxide films, heterostructures, and interfaces.

3.
Nat Commun ; 9(1): 41, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298986

RESUMO

Cracks in solid-state materials are typically irreversible. Here we report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 108 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks can reach over 107 cycles under 10-µs pulses, without catastrophic failure of the film.

4.
Sci Rep ; 6: 26491, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27215804

RESUMO

The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film can be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. These results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.

5.
Sci Rep ; 6: 22708, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940159

RESUMO

The realization of a controllable metamagnetic transition from AFM to FM ordering would open the door to a plethora of new spintronics based devices that, rather than reorienting spins in a ferromagnet, harness direct control of a materials intrinsic magnetic ordering. In this study FeRh films with drastically reduced transition temperatures and a large magneto-thermal hysteresis were produced for magnetocaloric and spintronics applications. Remarkably, giant controllable magnetization changes (measured to be as high has ~25%) are realized by manipulating the strain transfer from the external lattice when subjected to two structural phase transitions of BaTiO3 (001) single crystal substrate. These magnetization changes are the largest seen to date to be controllably induced in the FeRh system. Using polarized neutron reflectometry we reveal how just a slight in plane surface strain change at ~290C results in a massive magnetic transformation in the bottom half of the film clearly demonstrating a strong lattice-spin coupling in FeRh. By means of these substrate induced strain changes we show a way to reproducibly explore the effects of temperature and strain on the relative stabilities of the FM and AFM phases in multi-domain metamagnetic systems. This study also demonstrates for the first time the depth dependent nature of a controllable magnetic order using strain in an artificial multiferroic heterostructure.

6.
Nat Commun ; 6: 5959, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25564764

RESUMO

In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

7.
Philos Trans A Math Phys Eng Sci ; 372(2009): 20120441, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24421374

RESUMO

The role of elastic strain for magnetoelectric materials and devices is twofold. It can induce ferroic orders in thin films of otherwise non-ferroic materials. On the other hand, it provides the most exploited coupling mechanism in two-phase magnetoelectric materials and devices today. Complex oxide films (perovskites, spinels) are promising for both routes. The strain control of magnetic order in complex oxide films is a young research field, and few ab initio simulations are available for magnetic order in dependence on lattice parameters and lattice symmetry. Here, an experimental approach for the evaluation of how elastic strain in thin epitaxial films alters their magnetic order is introduced. The magnetic films are grown epitaxially in strain states controlled by buffer layers onto piezoelectric substrates of 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3(001). As an example, the strain dependence of the ordered magnetic moment of SrRuO3 has been investigated. At a tensile strain level of approximately 1%, SrRuO3 is tetragonal, and biaxial elastic strain induces a pronounced suppression of the ordered magnetic moment. As a second example, a strain-driven transition from a ferromagnetic to a magnetically disordered phase has been observed in epitaxial La0.8Sr0.2CoO3 films.

8.
Adv Mater ; 25(39): 5561-7, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23847158

RESUMO

Highly strained BiFeO3 films transition into a true tetragonal state at 430 °C but remain polar to much higher temperatures (∼800 °C). Piezoelectric switching is only possible up to 300 °C, i.e., at temperatures for which strain stabilizes the stripe-like coexistence of multiple polymorphs.

9.
Phys Rev Lett ; 100(25): 257601, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643702

RESUMO

Oxygen octahedral rotations are the most common phase transitions in perovskite crystal structures. Here we show that the color symmetry of such pure elastic distortions is isomorphic to magnetic point groups, which allows their probing through distinguishing polar versus magnetic symmetry. We demonstrate this isomorphism using nonlinear optical probing of the octahedral rotational transition in a compressively strained SrTiO3 thin film that exhibits ferroelectric (4mm) and antiferrodistortive (4{'}mm{'}) phases evolving through independent phase transitions. The approach has broader applicability for probing materials with lattice rotations that can be mapped to color groups.

10.
Phys Rev Lett ; 101(10): 107602, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18851256

RESUMO

Direct measurement of the remanent polarization of high quality (001)-oriented epitaxial BiFeO3 thin films shows a strong strain dependence, even larger than conventional (001)-oriented PbTiO3 films. Thermodynamic analysis reveals that a strain-induced polarization rotation mechanism is responsible for the large change in the out-of-plane polarization of (001) BiFeO3 with biaxial strain while the spontaneous polarization itself remains almost constant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA