RESUMO
Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antiviral activity in Vero-81 cells. Among them, clofoctol, an antibacterial drug used for the treatment of bacterial respiratory tract infections, was further investigated due to its favorable safety profile and pharmacokinetic properties. Notably, the peak concentration of clofoctol that can be achieved in human lungs is more than 20 times higher than its IC50 measured against SARS-CoV-2 in human pulmonary cells. This compound inhibits SARS-CoV-2 at a post-entry step. Lastly, therapeutic treatment of human ACE2 receptor transgenic mice decreased viral load, reduced inflammatory gene expression and lowered pulmonary pathology. Altogether, these data strongly support clofoctol as a therapeutic candidate for the treatment of COVID-19 patients.
Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Clorobenzenos , Chlorocebus aethiops , Cresóis , Humanos , Pulmão , Camundongos , Células VeroRESUMO
Historically, natural products have played a major role in the development of antibiotics. Their complex chemical structures and high polarity give them advantages in the drug discovery process. In the broad range of natural products, sesquiterpene lactones are interesting compounds because of their diverse biological activities, their high-polarity, and sp3-carbon-rich chemical structures. Parthenolide (PTL) is a natural compound isolated from Tanacetum parthenium, of the family of germacranolide-type sesquiterpene lactones. In recent years, parthenolide has been studied for its anti-inflammatory, antimigraine, and anticancer properties. Recently, PTL has shown antibacterial activities, especially against Gram-positive bacteria. However, few studies are available on the potential antitubercular activities of parthenolide and its analogs. It has been demonstrated that parthenolide's biological effects are linked to the reactivity of α-exo-methylene-γ-butyrolactone, which reacts with cysteine in targeted proteins via a Michael addition. In this work, we describe the ene reaction of acylnitroso intermediates with parthenolide leading to the regioselective and stereoselective synthesis of new derivatives and their biological evaluation. The addition of hydroxycarbamates and hydroxyureas led to original analogs with higher polarity and solubility than parthenolide. Through this synthetic route, the Michael acceptor motif was preserved and is thus believed to be involved in the selective activity against Mycobacterium tuberculosis.
Assuntos
Mycobacterium tuberculosis , Sesquiterpenos , Mycobacterium tuberculosis/metabolismo , Sesquiterpenos/química , Anti-Inflamatórios , Lactonas/químicaRESUMO
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challenging. Herein, we have used kinetic target-guided synthesis (KTGS) to identify such inhibitors. Co-crystallization experiments revealed the binding mode of three different inhibitors with increasing potency and selectivity over related enzymes. Selected analogues engage ERAP2 in cells and inhibit antigen presentation in a cellular context. 4 d (BDM88951) displays favorable in vitro ADME properties and in vivo exposure. In summary, KTGS allowed the discovery of the first nanomolar and selective highly promising ERAP2 inhibitors that pave the way of the exploration of the biological roles of this enzyme and provide lead compounds for drug discovery efforts.
Assuntos
Aminopeptidases , Apresentação de Antígeno , Aminopeptidases/metabolismo , Antígenos de Histocompatibilidade Classe I , Peptídeos/metabolismoRESUMO
The 3CL protease (3CLpro, Mpro) plays a key role in the replication of the SARS-CoV-2 and was validated as therapeutic target by the development and approval of specific antiviral drugs (nirmatrelvir, ensitrelvir), inhibitors of this protease. Moreover, its high conservation within the coronavirus family renders it an attractive therapeutic target for the development of anti-coronavirus compounds with broad spectrum activity to control COVID-19 and future coronavirus diseases. Here we report on the design, synthesis and structure-activity relationships of a new series of small covalent reversible inhibitors of the SARS-CoV-2 3CLpro. As elucidated thanks to the X-Ray structure of some inhibitors with the 3CLpro, the mode of inhibition involves acylation of the thiol of the catalytic cysteine. The synthesis of 60 analogs led to the identification of compound 56 that inhibits the SARS-CoV-2 3CLpro with high potency (IC50 = 70 nM) and displays antiviral activity in cells (EC50 = 3.1 µM). Notably, compound 56 inhibits the 3CLpro of three other human coronaviruses and exhibit a good selectivity against two human cysteine proteases. These results demonstrate the potential of this electrophilic N-acylbenzimidazole series as a basis for further optimization.
Assuntos
Antivirais , Benzimidazóis , Proteases 3C de Coronavírus , SARS-CoV-2 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Relação Estrutura-Atividade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Humanos , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Cisteína Endopeptidases/metabolismo , Acilação , Cisteína/química , Cisteína/farmacologia , Estrutura Molecular , Relação Dose-Resposta a Droga , Inibidores de Proteases/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Modelos Moleculares , Desenho de Fármacos , Cristalografia por Raios XRESUMO
Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor. In vitro evaluation of BDM91288 confirmed it to potentiate the activity of a panel of antibiotics against K. pneumoniae as well as revert clinically relevant antibiotic resistance mediated by acrAB-tolC overexpression. Using cryo-EM, BDM91288 binding to the transmembrane region of K. pneumoniae AcrB was confirmed, further validating the mechanism of action of this inhibitor. Finally, proof of concept studies demonstrated that oral administration of BDM91288 significantly potentiated the in vivo efficacy of levofloxacin treatment in a murine model of K. pneumoniae lung infection.
Assuntos
Antibacterianos , Proteínas de Escherichia coli , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacologia , Klebsiella pneumoniae/metabolismo , Escherichia coli , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologiaRESUMO
Sesquiterpene lactones (STLs) are a large group of terpenoids most commonly found in plants of the Asteraceae family, e.g., in chicory plants, displaying a wide range of interesting biological activities. However, further studies on the biological potential of chicory-derived STLs and analogues are challenging as only four of these molecules are commercially available (as analytical standards), and to date, there are no published or patented simple extraction-purification processes capable of large-scale STLs isolation. In this work, we describe a novel three-step large-scale extraction and purification method for the simultaneous purification of 11,13-dihydrolactucin (DHLc) and lactucin (Lc) starting from a chicory genotype rich in these STLs and the corresponding glucosyl and oxalyl conjugated forms. After a small-scale screening on 100 mg of freeze-dried chicory root powder, the best results were achieved with a 17 h water maceration at 30 °C. With these conditions, we managed to increase the content of DHLc and Lc, at the same time favoring the hydrolysis of their conjugated forms. On a larger scale, the extraction of 750 g of freeze-dried chicory root powder, followed by a liquid-liquid extraction step and a reversed-phase chromatography, allowed the recovery of 642.3 ± 76.3 mg of DHLc and 175.3 ± 32.9 mg of Lc. The two pure STLs were subsequently used in the context of semisynthesis to generate analogues for biological evaluation as antibacterial agents. In addition, other described chicory STLs that are not commercially available were also synthesized or extracted to serve as analytical standards for the study. In particular, lactucin-oxalate and 11,13-dihydrolactucin-oxalate were synthesized in two steps starting from Lc and DHLc, respectively. On the other hand, 11ß,13-dihydrolactucin-glucoside was obtained after a MeOH/H2O (70/30) extraction, followed by a liquid-liquid extraction step and a reversed-phase chromatography. Together, this work will help facilitate the evaluation of the biological potential of chicory-derived STLs and their semisynthetic analogues.
RESUMO
Multidrug-resistant Escherichia coli is a continuously growing worldwide public health problem, in which the well-known AcrAB-TolC tripartite RND efflux pump is a critical driver. We have previously described pyridylpiperazines as a novel class of allosteric inhibitors of E. coli AcrB which bind to a unique site in the protein transmembrane domain, allowing for the potentiation of antibiotic activity. Here, we show a rational optimization of pyridylpiperazines by modifying three specific derivatization points of the pyridine core to improve the potency and the pharmacokinetic properties of this chemical series. In particular, this work found that the introduction of a primary amine to the pyridine through ester (29, BDM91270) or oxadiazole (44, BDM91514) based linkers allowed for analogues with improved antibiotic boosting potency through AcrB inhibition. In vitro studies, using genetically engineered mutants, showed that this improvement in potency is mediated through novel interactions with distal acidic residues of the AcrB binding pocket. Of the two leads, compound 44 was found to have favorable physico-chemical properties and suitable plasma and microsomal stability. Together, this work expands the current structure-activity relationship data on pyridylpiperazine efflux pump inhibitors, and provides a promising step towards future in vivo proof of concept of pyridylpiperazines as antibiotic potentiators.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Antibacterianos/química , Piridinas/farmacologia , Piridinas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Transporte/metabolismoRESUMO
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, is responsible for the death of 1.5 million people each year and the number of bacteria resistant to the standard regimen is constantly increasing. This highlights the need to discover molecules that act on new M. tuberculosis targets. Mycolic acids, which are very long-chain fatty acids essential for M. tuberculosis viability, are synthesized by two types of fatty acid synthase (FAS) systems. MabA (FabG1) is an essential enzyme belonging to the FAS-II cycle. We have recently reported the discovery of anthranilic acids as MabA inhibitors. Here, the structure-activity relationships around the anthranilic acid core, the binding of a fluorinated analog to MabA by NMR experiments, the physico-chemical properties and the antimycobacterial activity of these inhibitors were explored. Further investigation of the mechanism of action in bacterio showed that these compounds affect other targets than MabA in mycobacterial cells and that their antituberculous activity is due to the carboxylic acid moiety which induces intrabacterial acidification.
RESUMO
A novel series of potent agonists of the bile acid receptor TGR5 bearing a dihydropyridone scaffold was developed from a high-throughput screen. Starting from a micromolar hit compound, we implemented an extensive structure-activity-relationship (SAR) study with the synthesis and biological evaluation of 83 analogues. The project culminated with the identification of the potent nanomolar TGR5 agonist 77A. We report the GLP-1 secretagogue effect of our lead compound ex vivo in mouse colonoids and in vivo. In addition, to identify specific features favorable for TGR5 activation, we generated and optimized a three-dimensional quantitative SAR model that contributed to our understanding of our activity profile and could guide further development of this dihydropyridone series.
Assuntos
Relação Quantitativa Estrutura-Atividade , Fatores de Transcrição , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon , Ácidos e Sais BiliaresRESUMO
PEGylation of therapeutic agents is known to improve the pharmacokinetic behavior of macromolecular drugs and nanoparticles. In this work, we performed the conjugation of polyethylene glycols (220-5000 Da) to a series of non-steroidal small agonists of the bile acids receptor TGR5. A suitable anchoring position on the agonist was identified to retain full agonistic potency with the conjugates. We describe herein an extensive structure-properties relationships study allowing us to finely describe the non-linear effects of the PEG length on the physicochemical as well as the in vitro and in vivo pharmacokinetic properties of these compounds. When appending a PEG of suitable length to the TGR5 pharmacophore, we were able to identify either systemic or gut lumen-restricted TGR5 agonists.
Assuntos
Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Barreira Hematoencefálica/metabolismo , Células CACO-2 , Células HEK293 , Humanos , Hipoglicemiantes/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Polietilenoglicóis/química , Receptores Acoplados a Proteínas G/química , Relação Estrutura-AtividadeRESUMO
In the last 5 years, cellular thermal shift assay (CETSA), a technology based on ligand-induced changes in protein thermal stability, has been increasingly used in drug discovery to address the fundamental question of whether drug candidates engage their intended target in a biologically relevant setting. To analyze lysates from cells submitted to increasing temperature, the detection and quantification of the remaining soluble protein can be achieved using quantitative mass spectrometry, Western blotting, or AlphaScreen techniques. Still, these approaches can be time- and cell-consuming. To cope with limitations of throughput and protein amount requirements, we developed a new coupled assay combining the advantages of a nanoacoustic transfer system and reverse-phase protein array technology within CETSA experiments. We validated the technology to assess engagement of inhibitors of insulin-degrading enzyme (IDE), an enzyme involved in diabetes and Alzheimer's disease. CETSA-acoustic reverse-phase protein array (CETSA-aRPPA) allows simultaneous analysis of many conditions and drug-target engagement with a small sample size, in a rapid, cost-effective, and biological material-saving manner.
Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala/métodos , Análise Serial de Proteínas/métodos , Proteínas/genética , Acústica , Linhagem Celular Tumoral , Humanos , Ligantes , Preparações Farmacêuticas/química , Proteínas/isolamento & purificaçãoRESUMO
Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, remains the leading cause of death from a single infectious agent worldwide. The emergence of drug-resistant M.tb strains stresses the need for drugs acting on new targets. Mycolic acids are very long chain fatty acids playing an essential role in the architecture and permeability of the mycobacterial cell wall. Their biosynthesis involves two fatty acid synthase (FAS) systems. Among the four enzymes (MabA, HadAB/BC, InhA and KasA/B) of the FAS-II cycle, MabA (FabG1) remains the only one for which specific inhibitors have not been reported yet. The development of a new LC-MS/MS based enzymatic assay allowed the screening of a 1280 fragment-library and led to the discovery of the first small molecules that inhibit MabA activity. A fragment from the anthranilic acid series was optimized into more potent inhibitors and their binding to MabA was confirmed by 19F ligand-observed NMR experiments.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , ortoaminobenzoatos/farmacologia , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Ácido Graxo Sintases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , ortoaminobenzoatos/químicaRESUMO
Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and to identify which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work thus provides the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows obtaining compounds equally stable in human and rodent models.