Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Eng ; 17(1): 71, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996914

RESUMO

BACKGROUND: Electrical stimulation is used for enhanced bone fracture healing. Electrochemical processes occur during the electrical stimulation at the electrodes and influence cellular reactions. Our approach aimed to distinguish between electrochemical and electric field effects on osteoblast-like MG-63 cells. We applied 20 Hz biphasic pulses via platinum electrodes for 2 h. The electrical stimulation of the cell culture medium and subsequent application to cells was compared to directly stimulated cells. The electric field distribution was predicted using a digital twin. RESULTS: Cyclic voltammetry and electrochemical impedance spectroscopy revealed partial electrolysis at the electrodes, which was confirmed by increased concentrations of hydrogen peroxide in the medium. While both direct stimulation and AC-conditioned medium decreased cell adhesion and spreading, only the direct stimulation enhanced the intracellular calcium ions and reactive oxygen species. CONCLUSION: The electrochemical by-product hydrogen peroxide is not the main contributor to the cellular effects of electrical stimulation. However, undesired effects like decreased adhesion are mediated through electrochemical products in stimulated medium. Detailed characterisation and monitoring of the stimulation set up and electrochemical reactions are necessary to find safe electrical stimulation protocols.

2.
Cells ; 11(17)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36078058

RESUMO

An extensive research field in regenerative medicine is electrical stimulation (ES) and its impact on tissue and cells. The mechanism of action of ES, particularly the role of electrical parameters like intensity, frequency, and duration of the electric field, is not yet fully understood. Human MG-63 osteoblasts were electrically stimulated for 10 min with a commercially available multi-channel system (IonOptix). We generated alternating current (AC) electrical fields with a voltage of 1 or 5 V and frequencies of 7.9 or 20 Hz, respectively. To exclude liquid-mediated effects, we characterized the AC-stimulated culture medium. AC stimulation did not change the medium's pH, temperature, and oxygen content. The H2O2 level was comparable with the unstimulated samples except at 5 V_7.9 Hz, where a significant increase in H2O2 was found within the first 30 min. Pulsed electrical stimulation was beneficial for the process of attachment and initial adhesion of suspended osteoblasts. At the same time, the intracellular Ca2+ level was enhanced and highest for 20 Hz stimulated cells with 1 and 5 V, respectively. In addition, increased Ca2+ mobilization after an additional trigger (ATP) was detected at these parameters. New knowledge was provided on why electrical stimulation contributes to cell activation in bone tissue regeneration.


Assuntos
Cálcio , Peróxido de Hidrogênio , Cálcio/metabolismo , Sinalização do Cálcio , Estimulação Elétrica , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Osteoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA