Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Magn Reson Med ; 91(4): 1541-1555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38084439

RESUMO

PURPOSE: The interaction between 129 Xe atoms and pulmonary capillary red blood cells provides cardiogenic signal oscillations that display sensitivity to precapillary and postcapillary pulmonary hypertension. Recently, such oscillations have been spatially mapped, but little is known about optimal reconstruction or sensitivity to artifacts. In this study, we use digital phantom simulations to specifically optimize keyhole reconstruction for oscillation imaging. We then use this optimized method to re-establish healthy reference values and quantitatively evaluate microvascular flow changes in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after pulmonary thromboendarterectomy (PTE). METHODS: A six-zone digital lung phantom was designed to investigate the effects of radial views, key radius, and SNR. One-point Dixon 129 Xe gas exchange MRI images were acquired in a healthy cohort (n = 17) to generate a reference distribution and thresholds for mapping red blood cell oscillations. These thresholds were applied to 10 CTEPH participants, with 6 rescanned following PTE. RESULTS: For undersampled acquisitions, a key radius of 0.14 k max $$ 0.14{k}_{\mathrm{max}} $$ was found to optimally resolve oscillation defects while minimizing excessive heterogeneity. CTEPH participants at baseline showed higher oscillation defect + low (32 ± 14%) compared with healthy volunteers (18 ± 12%, p < 0.001). For those scanned both before and after PTE, oscillation defect + low decreased from 37 ± 13% to 23 ± 14% (p = 0.03). CONCLUSIONS: Digital phantom simulations have informed an optimized keyhole reconstruction technique for gas exchange images acquired with standard 1-point Dixon parameters. Our proposed methodology enables more robust quantitative mapping of cardiogenic oscillations, potentially facilitating effective regional quantification of microvascular flow impairment in patients with pulmonary vascular diseases such as CTEPH.


Assuntos
Hipertensão Pulmonar , Pneumopatias , Humanos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Eritrócitos , Isótopos de Xenônio
2.
Magn Reson Med ; 90(4): 1555-1568, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246900

RESUMO

PURPOSE: 129 Xe MRI and MRS signals from airspaces, membrane tissues (M), and red blood cells (RBCs) provide measurements of pulmonary gas exchange. However, 129 Xe MRI/MRS studies have yet to account for hemoglobin concentration (Hb), which is expected to affect the uptake of 129 Xe in the membrane and RBC compartments. We propose a framework to adjust the membrane and RBC signals for Hb and use this to assess sex-specific differences in RBC/M and establish a Hb-adjusted healthy reference range for the RBC/M ratio. METHODS: We combined the 1D model of xenon gas exchange (MOXE) with the principle of TR-flip angle equivalence to establish scaling factors that normalize the dissolved-phase signals with respect to a standard H b 0 $$ H{b}^0 $$ (14 g/dL). 129 Xe MRI/MRS data from a healthy, young cohort (n = 18, age = 25.0 ± $$ \pm $$ 3.4 years) were used to validate this model and assess the impact of Hb adjustment on M/gas and RBC/gas images and RBC/M. RESULTS: Adjusting for Hb caused RBC/M to change by up to 20% in healthy individuals with normal Hb and had marked impacts on M/gas and RBC/gas distributions in 3D gas-exchange maps. RBC/M was higher in males than females both before and after Hb adjustment (p < 0.001). After Hb adjustment, the healthy reference value for RBC/M for a consortium-recommended acquisition of TR = 15 ms and flip = 20° was 0.589 ± $$ \pm $$ 0.083 (mean ± $$ \pm $$ SD). CONCLUSION: MOXE provides a useful framework for evaluating the Hb dependence of the membrane and RBC signals. This work indicates that adjusting for Hb is essential for accurately assessing 129 Xe gas-exchange MRI/MRS metrics.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Masculino , Feminino , Humanos , Adulto , Imageamento por Ressonância Magnética/métodos , Hemoglobinas , Xenônio , Eritrócitos , Troca Gasosa Pulmonar , Gases , Pulmão
3.
Radiology ; 305(2): 466-476, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35762891

RESUMO

BACKGROUND: In patients with post-acute COVID-19 syndrome (PACS), abnormal gas-transfer and pulmonary vascular density have been reported, but such findings have not been related to each other or to symptoms and exercise limitation. The pathophysiologic drivers of PACS in patients previously infected with COVID-19 who were admitted to in-patient treatment in hospital (or ever-hospitalized patients) and never-hospitalized patients are not well understood. PURPOSE: To determine the relationship of persistent symptoms and exercise limitation with xenon 129 (129Xe) MRI and CT pulmonary vascular measurements in individuals with PACS. MATERIALS AND METHODS: In this prospective study, patients with PACS aged 18-80 years with a positive polymerase chain reaction COVID-19 test were recruited from a quaternary-care COVID-19 clinic between April and October 2021. Participants with PACS underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLco), 129Xe MRI, and chest CT. Healthy controls had no prior history of COVID-19 and underwent spirometry, DLco, and 129Xe MRI. The 129Xe MRI red blood cell (RBC) to alveolar-barrier signal ratio, RBC area under the receiver operating characteristic curve (AUC), CT volume of pulmonary vessels with cross-sectional area 5 mm2 or smaller (BV5), and total blood volume were quantified. St George's Respiratory Questionnaire, International Physical Activity Questionnaire, and modified Borg Dyspnea Scale measured quality of life, exercise limitation, and dyspnea. Differences between groups were compared with use of Welch t-tests or Welch analysis of variance. Relationships were evaluated with use of Pearson (r) and Spearman (ρ) correlations. RESULTS: Forty participants were evaluated, including six controls (mean age ± SD, 35 years ± 15, three women) and 34 participants with PACS (mean age, 53 years ± 13, 18 women), of whom 22 were never hospitalized. The 129Xe MRI RBC:barrier ratio was lower in ever-hospitalized participants (P = .04) compared to controls. BV5 correlated with RBC AUC (ρ = .44, P = .03). The 129Xe MRI RBC:barrier ratio was related to DLco (r = .57, P = .002) and forced expiratory volume in 1 second (ρ = .35, P = .03); RBC AUC was related to dyspnea (ρ = -.35, P = .04) and International Physical Activity Questionnaire score (ρ = .45, P = .02). CONCLUSION: Xenon 129 (129Xe) MRI measurements were lower in participants previously infected with COVID-19 who were admitted to in-patient treatment in hospital with post-acute COVID-19 syndrome, 34 weeks ± 25 after infection compared to controls. The 129Xe MRI measures were associated with CT pulmonary vascular density, diffusing capacity of the lung for carbon monoxide, exercise capacity, and dyspnea. Clinical trial registration no.: NCT04584671 © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Wild and Collier in this issue.


Assuntos
COVID-19 , Feminino , Humanos , Pessoa de Meia-Idade , Monóxido de Carbono , COVID-19/diagnóstico por imagem , Dispneia , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , Qualidade de Vida , Tomografia Computadorizada por Raios X , Isótopos de Xenônio , Masculino , Adolescente , Adulto Jovem , Adulto , Idoso , Idoso de 80 Anos ou mais , Síndrome de COVID-19 Pós-Aguda
4.
Magn Reson Med ; 88(2): 802-816, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35506520

RESUMO

PURPOSE: To correct for RF inhomogeneity for in vivo 129 Xe ventilation MRI using flip-angle mapping enabled by randomized 3D radial acquisitions. To extend this RF-depolarization mapping approach to create a flip-angle map template applicable to arbitrary acquisition strategies, and to compare these approaches to conventional bias field correction. METHODS: RF-depolarization mapping was evaluated first in digital simulations and then in 51 subjects who had undergone radial 129 Xe ventilation MRI in the supine position at 3T (views = 3600; samples/view = 128; TR/TE = 4.5/0.45 ms; flip angle = 1.5; FOV = 40 cm). The images were corrected using newly developed RF-depolarization and templated-based methods and the resulting quantitative ventilation metrics (mean, coefficient of variation, and gradient) were compared to those resulting from N4ITK correction. RESULTS: RF-depolarization and template-based mapping methods yielded a pattern of RF-inhomogeneity consistent with the expected variation based on coil architecture. The resulting corrected images were visually similar, but meaningfully distinct from those generated using standard N4ITK correction. The N4ITK algorithm eliminated the physiologically expected anterior-posterior gradient (-0.04 ± 1.56%/cm, P < 0.001). These 2 newly introduced methods of RF-depolarization and template correction retained the physiologically expected anterior-posterior ventilation gradient in healthy subjects (2.77 ± 2.09%/cm and 2.01 ± 2.73%/cm, respectively). CONCLUSIONS: Randomized 3D 129 Xe MRI ventilation acquisitions can inherently be corrected for bias field, and this technique can be extended to create flip angle templates capable of correcting images from a given coil regardless of acquisition strategy. These methods may be more favorable than the de facto standard N4ITK because they can remove undesirable heterogeneity caused by RF effects while retaining results from known physiology.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Algoritmos , Humanos , Pulmão , Imageamento por Ressonância Magnética/métodos , Respiração
5.
Radiology ; 301(1): 211-220, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313473

RESUMO

Background Recent studies demonstrate that antifibrotic drugs previously reserved for idiopathic pulmonary fibrosis (IPF) may slow progression in other interstitial lung diseases (ILDs), creating an urgent need for tools that can sensitively assess disease activity, progression, and therapy response across ILDs. Hyperpolarized xenon 129 (129Xe) MRI and spectroscopy have provided noninvasive measurements of regional gas-exchange abnormalities in IPF. Purpose To assess gas exchange function using 129Xe MRI in a group of study participants with nonspecific interstitial pneumonia (NSIP) compared with healthy control participants. Materials and Methods In this prospective study, participants with NSIP and healthy control participants were enrolled between November 2017 and February 2020 and underwent 129Xe MRI and spectroscopy. Quantitative imaging provided three-dimensional maps of ventilation, interstitial barrier uptake, and transfer into the red blood cell (RBC) compartment. Spectroscopy provided parameters of the static RBC and barrier uptake compartments, as well as cardiogenic oscillations in RBC signal amplitude and chemical shift. Differences between NSIP and healthy control participants were assessed using the Wilcoxon rank-sum test. Results Thirty-six participants with NSIP (mean age, 57 years ± 11 [standard deviation]; 27 women) and 15 healthy control participants (mean age, 39 years ± 18; two women) were evaluated. Participants with NSIP had no difference in ventilation compared with healthy control participants (median, 4.4% [first quartile, 1.5%; third quartile, 8.7%] vs 6.0% [first quartile, 2.8%; third quartile, 6.9%]; P = .91), but they had a higher barrier uptake (median, 6.2% [first quartile, 1.8%; third quartile, 23.9%] vs 0.53% [first quartile, 0.33%; third quartile, 2.9%]; P = .003) and an increased RBC transfer defect (median, 20.6% [first quartile, 11.6%; third quartile, 27.8%] vs 2.8% [first quartile, 2.3%; third quartile, 4.9%]; P < .001). NSIP participants also had a reduced ratio of RBC-to-barrier peaks (median, 0.24 [first quartile, 0.19; third quartile, 0.31] vs 0.57 [first quartile, 0.52; third quartile, 0.67]; P < .001) and a reduced RBC chemical shift (median, 217.5 ppm [first quartile, 217.0 ppm; third quartile, 218.0 ppm] vs 218.2 ppm [first quartile, 217.9 ppm; third quartile, 218.6 ppm]; P = .001). Conclusion Participants with nonspecific interstitial pneumonia had increased barrier uptake and decreased red blood cell (RBC) transfer compared with healthy controls measured using xenon 129 gas-exchange MRI and reduced RBC-to-barrier ratio and RBC chemical shift measured using spectroscopy. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wild in this issue.


Assuntos
Doenças Pulmonares Intersticiais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Troca Gasosa Pulmonar , Isótopos de Xenônio , Adulto , Estudos Transversais , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise Espectral/métodos
6.
J Magn Reson Imaging ; 54(3): 964-974, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960534

RESUMO

BACKGROUND: Hyperpolarized 129 Xe magnetic resonance imaging (MRI) provides a non-invasive assessment of regional pulmonary gas exchange function. This technique has demonstrated that chronic obstructive pulmonary disease (COPD) patients exhibit ventilation defects, reduced interstitial barrier tissue uptake, and poor transfer to capillary red blood cells (RBCs). However, the behavior of these measurements following therapeutic intervention is unknown. PURPOSE: To characterize changes in 129 Xe gas transfer function following administration of an inhaled long-acting beta-agonist/long-acting muscarinic receptor antagonist (LABA/LAMA) bronchodilator. STUDY TYPE: Prospective. POPULATION: Seventeen COPD subjects (GOLD II/III classification per Global Initiative for Chronic Obstructive Lung Disease criteria) were imaged before and after 2 weeks of LABA/LAMA therapy. FIELD STRENGTH/SEQUENCES: Dedicated ventilation imaging used a multi-slice 2D gradient echo sequence. Three-dimensional images of ventilation, barrier uptake, and RBC transfer used an interleaved, radial, 1-point Dixon sequence. Imaging was acquired at 3 T. ASSESSMENT: 129 Xe measurements were quantified before and after LABA/LAMA treatment by ventilation defect + low percent (vendef + low ) and by barrier uptake and RBC transfer relative to a healthy reference population (bar%ref and RBC%ref ). Pulmonary function tests, including diffusing capacity of the lung for carbon monoxide (DLCO ), were also performed before and after treatment. STATISTICAL TESTS: Paired t-test, Pearson correlation coefficient (r). RESULTS: Baseline vendef + low was 57.8 ± 8.4%, bar%ref was 73.2 ± 19.6%, and RBC%ref was 36.5 ± 13.6%. Following treatment, vendef + low decreased to 52.5 ± 10.6% (P < 0.05), and improved in 14/17 (82.4%) of subjects. However, RBC%ref decreased in 10/17 (58.8%) of subjects. Baseline measurements of bar%ref and DLCO were correlated with the degree of post-treatment change in vendef + low (r = -0.49, P < 0.05 and r = -0.52, P < 0.05, respectively). CONCLUSION: LABA/LAMA therapy tended to preferentially improve ventilation in subjects whose 129 Xe barrier uptake and DLCO were relatively preserved. However, newly ventilated regions often revealed RBC transfer defects, an aspect of lung function opaque to spirometry. These microvasculature abnormalities must be accounted for when assessing the effects of LABA/LAMA therapy. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 4.


Assuntos
Broncodilatadores , Doença Pulmonar Obstrutiva Crônica , Administração por Inalação , Broncodilatadores/uso terapêutico , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
7.
Eur Respir J ; 54(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619473

RESUMO

BACKGROUND: As an increasing number of patients exhibit concomitant cardiac and pulmonary disease, limitations of standard diagnostic criteria are more frequently encountered. Here, we apply noninvasive 129Xe magnetic resonance imaging (MRI) and spectroscopy to identify patterns of regional gas transfer impairment and haemodynamics that are uniquely associated with chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), left heart failure (LHF) and pulmonary arterial hypertension (PAH). METHODS: Healthy volunteers (n=23) and patients with COPD (n=8), IPF (n=12), LHF (n=6) and PAH (n=10) underwent 129Xe gas transfer imaging and dynamic spectroscopy. For each patient, three-dimensional maps were generated to depict ventilation, barrier uptake (129Xe dissolved in interstitial tissue) and red blood cell (RBC) transfer (129Xe dissolved in RBCs). Dynamic 129Xe spectroscopy was used to quantify cardiogenic oscillations in the RBC signal amplitude and frequency shift. RESULTS: Compared with healthy volunteers, all patient groups exhibited decreased ventilation and RBC transfer (both p≤0.01). Patients with COPD demonstrated more ventilation and barrier defects compared with all other groups (both p≤0.02). In contrast, IPF patients demonstrated elevated barrier uptake compared with all other groups (p≤0.007), and increased RBC amplitude and shift oscillations compared with healthy volunteers (p=0.007 and p≤0.01, respectively). Patients with COPD and PAH both exhibited decreased RBC amplitude oscillations (p=0.02 and p=0.005, respectively) compared with healthy volunteers. LHF was distinguishable from PAH by enhanced RBC amplitude oscillations (p=0.01). CONCLUSION: COPD, IPF, LHF and PAH each exhibit unique 129Xe MRI and dynamic spectroscopy signatures. These metrics may help with diagnostic challenges in cardiopulmonary disease and increase understanding of regional lung function and haemodynamics at the alveolar-capillary level.


Assuntos
Insuficiência Cardíaca/diagnóstico por imagem , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Isótopos de Xenônio , Adulto Jovem
8.
Magn Reson Med ; 82(5): 1961-1968, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31218753

RESUMO

PURPOSE: Hyperpolarized 129 Xe MR is increasingly being adopted worldwide, but no standards exist for assessing or comparing performance at different 129 Xe imaging centers. Therefore, we sought to develop a thermally polarized xenon phantom assembly, approximating the size of a human torso, along with an associated imaging protocol to enable rapid quality-assurance imaging. METHODS: MR-compatible pressure vessels, with an internal volume of 5.85 L, were constructed from pressure-rated, engineering grade PE4710 high-density polyethylene. They were filled with a mixture of 61% natural xenon and 39% oxygen to approximately 11.6 bar and placed in a loader shell filled with a 0.56% saline solution to mimic the human chest. Imaging employed a 2D spoiled gradient-echo sequence using non-slice-selective excitation (TR/TE = 750/6.13 ms, flip angle = 74°, FOV = 40 × 440 mm, matrix = 64 × 32, bandwidth = 30 Hz/pixel, averages = 4), resulting in a 1.6 min acquisition. System characterization and imaging were performed at 8 different MRI centers. RESULTS: At 3 Telsa, 129 Xe in the pressure vessels was characterized by T1 = 580.5 ± 8.3 ms, linewidth = 0.21 ppm, and chemical shift = +10.2 ppm. The phantom assembly was used to obtain transmit voltage calibrations and 2D and 3D images across multiple coil and scanner configurations at 8 sites. Across the 5 sites that employed a standard flexible chest coil, the SNR was 12.4 ± 1.8. CONCLUSION: The high-density polyethylene pressure vessels filled with thermally polarized xenon and associated loader shell combine to form a phantom assembly that enables spectroscopic and imaging acquisitions that can be used for testing, quality assurance, and performance tracking-capabilities essential for standardizing hyperpolarized 129 Xe MRI within and across institutions.


Assuntos
Imageamento por Ressonância Magnética/normas , Imagens de Fantasmas/normas , Isótopos de Xenônio , Desenho de Equipamento , Humanos
9.
NMR Biomed ; 32(1): e4029, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30457202

RESUMO

The spectral parameters of hyperpolarized 129 Xe exchanging between airspaces, interstitial barrier, and red blood cells (RBCs) are sensitive to pulmonary pathophysiology. This study sought to evaluate whether the dynamics of 129 Xe spectroscopy provide additional insight, with particular focus on quantifying cardiogenic oscillations in the RBC resonance. 129 Xe spectra were dynamically acquired in eight healthy volunteers and nine subjects with idiopathic pulmonary fibrosis (IPF). 129 Xe FIDs were collected every 20 ms (TE  = 0.932 ms, 512 points, dwell time = 32 µs, flip angle ≈ 20°) during a 16 s breathing maneuver. The FIDs were pre-processed using the spectral improvement by Fourier thresholding technique (SIFT) and fit in the time domain to determine the airspace, interstitial barrier, and RBC spectral parameters. The RBC and gas resonances were fit to a Lorentzian lineshape, while the barrier was fit to a Voigt lineshape to account for its greater structural heterogeneity. For each complex resonance the amplitude, chemical shift, linewidth(s), and phase were calculated. The time-averaged spectra confirmed that the RBC to barrier amplitude ratio (RBC:barrier ratio) and RBC chemical shift are both reduced in IPF subjects. Their temporal dynamics showed that all three 129 Xe resonances are affected by the breathing maneuver. Most notably, several RBC spectral parameters exhibited prominent oscillations at the cardiac frequency, and their peak-to-peak variation differed between IPF subjects and healthy volunteers. In the IPF cohort, oscillations were more prominent in the RBC amplitude (16.8 ± 5.2 versus 9.7 ± 2.9%; P = 0.008), chemical shift (0.43 ± 0.33 versus 0.083 ± 0.05 ppm; P < 0.001), and phase (7.7 ± 5.6 versus 1.4 ± 0.8°; P < 0.001). Dynamic 129 Xe spectroscopy is a simple and sensitive tool that probes the temporal variability of gas exchange and may prove useful in discerning the underlying causes of its impairment.


Assuntos
Fibrose Pulmonar Idiopática/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Isótopos de Xenônio/química , Adulto , Idoso , Eritrócitos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
10.
Magn Reson Med ; 80(6): 2374-2383, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30024058

RESUMO

PURPOSE: Hyperpolarized 129 Xe MRI depicting 3D ventilation, interstitial barrier uptake, and transfer to red blood cells (RBCs) has emerged as a powerful new means of detecting pulmonary disease. However, given the challenging susceptibility environment of the lung, such gas transfer imaging has, thus far, only been implemented at 1.5T. Here, we seek to demonstrate the feasibility of Dixon-based 129 Xe gas transfer MRI at 3T. METHODS: Seven healthy subjects and six patients with pulmonary disorders were recruited to characterize 129 Xe spectral structure, optimize acquisition parameters, and acquire representative images. Imaging used randomized, gradient-spoiled 3D-radial encoding of 1000 gas (0.5° flip) and dissolved (20° flip) views, reconstructed into 3-mm isotropic voxels. The center of k-space was sampled when barrier and RBC compartments were 90° out of phase (TE90 ). A single dissolved phase spectrum was appended to the sequence to measure the global RBC-barrier ratio for Dixon-based decomposition. RESULTS: A 0.69 ms sinc was found to generate minimal off-resonance gas-phase excitation (3.0 ± 0.3% of the dissolved-phase), yielding a TE90 = 0.47 ± 0.02 ms. The RBC and barrier resonance frequencies were shifted by 217.6 ± 0.6 ppm and 197.8 ± 0.2 ppm. The RBC T 2 * was estimated to be ∼1.1 ms, and therefore each read-out was limited to 1.3 ms. 129 Xe gas and dissolved-phase images have sufficient SNR to produce gas transfer maps of similar quality and sensitivity to pathology, as previously obtained at 1.5T. CONCLUSIONS: Despite short dissolved-phase T 2 * , 129 Xe gas transfer MRI is feasible at 3T.


Assuntos
Gases , Pneumopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Adulto , Idoso , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Eritrócitos/metabolismo , Feminino , Heterozigoto , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Pneumopatias/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Mutação , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Respiração , Solubilidade , Adulto Jovem , alfa 1-Antitripsina/genética
11.
Magn Reson Med ; 78(4): 1306-1315, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28940334

RESUMO

PURPOSE: The purpose of this work was to accurately characterize the spectral properties of hyperpolarized 129 Xe in patients with idiopathic pulmonary fibrosis (IPF) compared to healthy volunteers. METHODS: Subjects underwent hyperpolarized 129 Xe breath-hold spectroscopy, during which 38 dissolved-phase free induction decays (FIDs) were acquired after reaching steady state (echo time/repetition time = 0.875/50 ms; bandwidth = 8.06 kHz; flip angle≈22 °). FIDs were averaged and then decomposed into multiple spectral components using time-domain curve fitting. The resulting amplitudes, frequencies, line widths, and starting phases of each component were compared among groups using a Mann-Whitney-Wilcoxon U test. RESULTS: Three dissolved-phase resonances, consisting of red blood cells (RBCs) and two barrier compartments, were consistently identified in all subjects. In subjects with IPF relative to healthy volunteers, the RBC frequency was 0.70 parts per million (ppm) more negative (P = 0.05), the chemical shift of barrier 2 was 0.6 ppm more negative (P = 0.009), the line widths of both barrier peaks were ∼2 ppm narrower (P < 0.001), and the starting phase of barrier 1 was 20.3 ° higher (P = 0.01). Moreover, the ratio RBC:barriers was reduced by 52.9% in IPF (P < 0.001). CONCLUSIONS: The accurate decomposition of 129 Xe spectra not only has merit for developing a global metric of pulmonary function, but also provides necessary insights to optimize phase-sensitive methods for imaging 129 Xe gas transfer. Magn Reson Med 78:1306-1315, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Fibrose Pulmonar Idiopática/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/uso terapêutico , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
12.
Cytometry A ; 85(11): 978-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25132217

RESUMO

Widefield fluorescence microscopy is a highly used tool for visually assessing biological samples and for quantifying cell responses. Despite its widespread use in high content analysis and other imaging applications, few published methods exist for evaluating and benchmarking the analytical performance of a microscope. Easy-to-use benchmarking methods would facilitate the use of fluorescence imaging as a quantitative analytical tool in research applications, and would aid the determination of instrumental method validation for commercial product development applications. We describe and evaluate an automated method to characterize a fluorescence imaging system's performance by benchmarking the detection threshold, saturation, and linear dynamic range to a reference material. The benchmarking procedure is demonstrated using two different materials as the reference material, uranyl-ion-doped glass and Schott 475 GG filter glass. Both are suitable candidate reference materials that are homogeneously fluorescent and highly photostable, and the Schott 475 GG filter glass is currently commercially available. In addition to benchmarking the analytical performance, we also demonstrate that the reference materials provide for accurate day to day intensity calibration. Published 2014 Wiley Periodicals Inc.


Assuntos
Benchmarking , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Automação , Calibragem , Citometria de Fluxo
13.
ERJ Open Res ; 8(2)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35586448

RESUMO

Background: The diagnosis of pulmonary hypertension (PH) remains challenging. Pre- and post-capillary PH have different signatures on noninvasive 129Xe gas-exchange magnetic resonance imaging (MRI) and dynamic MR spectroscopy (MRS). We tested the accuracy of 129Xe MRI/MRS to diagnose PH status compared to right heart catheterisation (RHC). Methods: 129Xe MRI/MRS from 93 subjects was used to develop a diagnostic algorithm, which was tested in 32 patients undergoing RHC on the same day (n=20) or within 5 months (42±40 days) (n=12). Three expert readers, blinded to RHC, used 129Xe MRI/MRS to classify subjects as pre-capillary PH, post-capillary PH, no PH and no interstitial lung disease (ILD), or ILD. Results: For pre-capillary PH, 129Xe MRI/MRS diagnostic accuracy was 75% (95% CI 66-84) with a sensitivity of 67% (95% CI 54-79) and a specificity of 86% (95% CI 75-96); for post-capillary PH accuracy was 69% (95% CI 59-78) with sensitivity of 54% (95% CI 34-74) and specificity of 74% (95% CI 63-84). The model performed well in straightforward cases of pre-capillary PH but was less accurate in its diagnosis in the presence of mixed disease, particularly in the presence of ILD or combined post- and pre-capillary PH. Conclusion: This study demonstrates the potential to develop 129Xe MRI/MRS into a modality with good accuracy in detecting pre- and post-capillary PH. Furthermore, the combination of 129Xe dynamic MRS and gas-exchange MRI uniquely provide concurrent, noninvasive assessment of both haemodynamics and gas-exchange impairment that may aid in the detection of PH.

14.
Chest ; 161(4): e199-e202, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396051

RESUMO

In an asymptomatic 19-year-old who regularly underwent cardiopulmonary fitness testing for national lifeguard-accreditation, 129Xe MRI unexpectedly revealed an abnormally augmented RBC signal and RBC-to-alveolar-capillary-tissue ratio with spatially homogeneous ventilation, tissue barrier, and RBC images. Pulmonary function was normal, but cardiopulmonary follow-up including transthoracic and transesophageal echocardiogram, heart catheterization, and contrast-enhanced cardiac CT imaging led to the diagnosis of a large (20 × 27 mm) secundum atrial septal defect (ASD) with a net right-to-left shunt (Qp:Qs = 0.5) and normal pulmonary pressures. This novel, unexpected case revealed that 129Xe RBC signal intensity likely reflected erythrocytosis, compensatory to the abnormal cardiovascular hemodynamics that resulted from a large congenital ASD. Unlike ASD cases that present with dyspnea and exercise limitation, this 129Xe MRI abnormality was detected in an asymptomatic teenager. This is the first report of asymptomatic adult congenital heart disease diagnosed subsequent to novel 129Xe MRI that led to early intervention, avoiding long-term complications of cyanosis, including ventricular fibrosis and thromboembolic and bleeding risks.


Assuntos
Cardiopatias Congênitas , Comunicação Interatrial , Adolescente , Adulto , Cateterismo Cardíaco , Comunicação Interatrial/diagnóstico por imagem , Humanos , Pulmão , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Adulto Jovem
15.
Int J Radiat Oncol Biol Phys ; 111(4): 1044-1057, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265395

RESUMO

PURPOSE: To present a methodology to use pulmonary gas exchange maps to guide functional avoidance treatment planning in radiation therapy (RT) and evaluate its efficacy compared with ventilation-guided treatment planning. METHODS AND MATERIALS: Before receiving conventional RT for non-small cell lung cancer, 11 patients underwent hyperpolarized 129Xe gas exchange magnetic resonance imaging to map the distribution of xenon in its gas phase (ventilation) and transiently bound to red blood cells in the alveolar capillaries (gas exchange). Both ventilation and gas exchange maps were independently used to guide development of new functional avoidance treatment plans for every patient, while adhering to institutional dose-volume constraints for normal tissues and target coverage. Furthermore, dose-volume histogram (DVH)-based reoptimizations of the clinical plan, with reductions in mean lung dose (MLD) equal to the functional avoidance plans, were created to serve as the control group. To evaluate each plan (regardless of type), gas exchange maps, representing end-to-end lung function, were used to calculate gas exchange-weighted MLD (fMLD), gas exchange-weighted volume receiving ≥20 Gy (fV20), and mean dose in the highest gas exchanging 33% and 50% volumes of lung (MLD-f33% and MLD-f50%). Using each clinically approved plan as a baseline, the reductions in functional metrics were compared for ventilation-optimization, gas exchange optimization, and DVH-based reoptimization. Statistical significance was determined using the Freidman test, with subsequent subdivision when indicated by P values less than .10 and post hoc testing with Wilcoxon signed rank tests to determine significant differences (P < .05). Toxicity modeling was performed using an established function-based model to estimate clinical significance of the results. RESULTS: Compared with DVH-based reoptimization of the clinically approved plans, gas exchange-guided functional avoidance planning more effectively reduced the gas exchange-weighted metrics fMLD (average ± SD, -78 ± 79 cGy, compared with -45 ± 34 cGy; P = .03), MLD-f33% (-135 ± 136 cGy, compared with -52 ± 47 cGy; P = .004), and MLD-f50% (-96 ± 95 cGy, compared with -47 ± 40 cGy; P = .01). Comparing the 2 functional planning types, Gas Exchange-Guided planning more effectively reduced MLD-f33% compared with ventilation-guided planning (-64 ± 95; P = .009). For some patients, Gas Exchange-Guided functional avoidance plans demonstrated clinically significant reductions in model-predicted toxicity, more so than the accompanying ventilation-guided plans and DVH-based reoptimizations. CONCLUSION: Gas Exchange-Guided planning effectively reduced dose to high gas exchanging regions of lung while maintaining clinically acceptable plan quality. In many patients, ventilation-guided planning incidentally reduced dose to higher gas exchange regions, to a lesser extent. This methodology enables future prospective trials to examine patient outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Imageamento por Ressonância Magnética , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Xenônio
16.
J Appl Physiol (1985) ; 130(5): 1398-1409, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33734831

RESUMO

Hyperpolarized 129Xe MRI has emerged as a novel means to evaluate pulmonary function via 3D mapping of ventilation, interstitial barrier uptake, and RBC transfer. However, the physiological interpretation of these measurements has yet to be firmly established. Here, we propose a model that uses the three components of 129Xe gas-exchange MRI to estimate accessible alveolar volume (VA), membrane conductance, and capillary blood volume contributions to DLCO. 129Xe ventilated volume (VV) was related to VA by a scaling factor kV = 1.47 with 95% confidence interval [1.42, 1.52], relative 129Xe barrier uptake (normalized by the healthy reference value) was used to estimate the membrane-specific conductance coefficient kB = 10.6 [8.6, 13.6] mL/min/mmHg/L, whereas normalized RBC transfer was used to calculate the capillary blood volume-specific conductance coefficient kR = 13.6 [11.4, 16.7] mL/min/mmHg/L. In this way, the barrier and RBC transfer per unit volume determined the transfer coefficient KCO, which was then multiplied by image-estimated VA to obtain DLCO. The model was built on a cohort of 41 healthy subjects and 101 patients with pulmonary disorders. The resulting 129Xe-derived DLCO correlated strongly (R2 = 0.75, P < 0.001) with the measured values, a finding that was preserved within each individual disease cohort. The ability to use 129Xe MRI measures of ventilation, barrier uptake, and RBC transfer to estimate each of the underlying constituents of DLCO clarifies the interpretation of these images while enabling their use to monitor these aspects of gas exchange independently and regionally.NEW & NOTEWORTHY The diffusing capacity for carbon monoxide (DLCO) is perhaps one of the most comprehensive physiological measures used in pulmonary medicine. Here, we spatially resolve and estimate its key components-accessible alveolar volume, membrane, and capillary blood volume conductances-using hyperpolarized 129Xe MRI of ventilation, interstitial barrier uptake, and red blood cell transfer. This image-derived DLCO correlates strongly with measured values in 142 subjects with a broad range of pulmonary disorders.


Assuntos
Pneumopatias , Isótopos de Xenônio , Monóxido de Carbono , Humanos , Pulmão , Imageamento por Ressonância Magnética , Capacidade de Difusão Pulmonar , Respiração
17.
J Appl Physiol (1985) ; 129(2): 218-229, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32552429

RESUMO

Magnetic resonance (MR) imaging and spectroscopy using dissolved hyperpolarized (HP) 129Xe have expanded the ability to probe lung function regionally and noninvasively. In particular, HP 129Xe imaging has been used to quantify impaired gas uptake by the pulmonary tissues. Whole-lung spectroscopy has also been used to assess global cardiogenic oscillations in the MR signal intensity originating from 129Xe dissolved in the red blood cells of pulmonary capillaries. Herein, we show that the magnitude of these cardiogenic dynamics can be mapped three dimensionally using radial MRI, because dissolved 129Xe dynamics are encoded directly in the raw imaging data. Specifically, 1-point Dixon imaging is combined with postacquisition keyhole image reconstruction to assess regional blood volume fluctuations within the pulmonary microvasculature throughout the cardiac cycle. This "oscillation mapping" was applied in healthy subjects (mean amplitude 9% of total RBC signal) and patients with pulmonary arterial hypertension (PAH; mean 4%) and idiopathic pulmonary fibrosis (IPF; mean 14%). Whole-lung mean values from these oscillation maps correlated strongly with spectroscopy and clinical pulmonary function testing, but exhibited significant regional heterogeneity, including gravitationally dependent gradients in healthy subjects. Moreover, regional oscillations were found to be sensitive to disease state. Greater percentages of the lungs exhibit low-amplitude oscillations in PAH patients, and longitudinal imaging shows high-amplitude oscillations increase significantly over time (4-14 mo, P = 0.02) in IPF patients. This technique enables regional dynamics within the pulmonary capillary bed to be measured, and in doing so, provides insight into the origin and progression of pathophysiology within the lung microvasculature.NEW & NOTEWORTHY Spatially heterogeneous abnormalities within the lung microvasculature contribute to pathology in various cardiopulmonary diseases but are difficult to assess noninvasively. Hyperpolarized 129Xe MRI is a noninvasive method to probe lung function, including regional gas exchange between pulmonary air spaces and capillaries. We show that cardiogenic oscillations in the raw dissolved 129Xe MRI signal from pulmonary capillary red blood cells can be imaged using a postacquisition reconstruction technique, providing a new means of assessing regional lung microvasculature function and disease state.


Assuntos
Fibrose Pulmonar Idiopática , Isótopos de Xenônio , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Microvasos/diagnóstico por imagem
18.
Med Phys ; 44(6): 2415-2428, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28382694

RESUMO

PURPOSE: Hyperpolarized 129 Xe magnetic resonance imaging (MRI) using Dixon-based decomposition enables single-breath imaging of 129 Xe in the airspaces, interstitial barrier tissues, and red blood cells (RBCs). However, methods to quantitatively visualize information from these images of pulmonary gas transfer are lacking. Here, we introduce a novel method to transform these data into quantitative maps of pulmonary ventilation, and 129 Xe gas transfer to barrier and RBC compartments. METHODS: A total of 13 healthy subjects and 12 idiopathic pulmonary fibrosis (IPF) subjects underwent thoracic 1 H MRI and hyperpolarized 129 Xe MRI with one-point Dixon decomposition to obtain images of 129 Xe in airspaces, barrier and red blood cells (RBCs). 129 Xe images were processed into quantitative binning maps of all three compartments using thresholds based on the mean and standard deviations of distributions derived from the healthy reference cohort. Binning maps were analyzed to derive quantitative measures of ventilation, barrier uptake, and RBC transfer. This method was also used to illustrate different ventilation and gas transfer patterns in a patient with emphysema and one with pulmonary arterial hypertension (PAH). RESULTS: In the healthy reference cohort, the mean normalized signals were 0.51 ± 0.19 for ventilation, 4.9 ± 1.5 x 10-3 for barrier uptake and 2.6 ± 1.0 × 10-3 for RBC (transfer). In IPF patients, ventilation was similarly homogenous to healthy subjects, although shifted toward slightly lower values (0.43 ± 0.19). However, mean barrier uptake in IPF patients was nearly 2× higher than in healthy subjects, with 47% of voxels classified as high, compared to 3% in healthy controls. Moreover, in IPF, RBC transfer was reduced, mainly in the basal lung with 41% of voxels classified as low. In healthy volunteers, only 15% of RBC transfer was classified as low and these voxels were typically in the anterior, gravitationally nondependent lung. CONCLUSIONS: This study demonstrates a straightforward means to generate semiquantitative binning maps depicting 129 Xe ventilation and gas transfer to barrier and RBC compartments. These initial results suggest that the method could be valuable for characterizing both normal physiology and pathophysiology associated with a wide range of pulmonary disorders.


Assuntos
Imageamento por Ressonância Magnética , Enfisema Pulmonar/diagnóstico por imagem , Ventilação Pulmonar , Humanos , Pulmão , Isótopos de Xenônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA