Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mol Ecol ; : e17277, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279695

RESUMO

Chromosomal inversions can play an important role in divergence and reproductive isolation by building and maintaining distinct allelic combinations between evolutionary lineages. Alternatively, they can take the form of balanced polymorphisms that segregate within populations until one arrangement becomes fixed. Many questions remain about how inversion polymorphisms arise, how they are maintained over the long term, and ultimately, whether and how they contribute to speciation. The long-snouted seahorse (Hippocampus guttulatus) is genetically subdivided into geographic lineages and marine-lagoon ecotypes, with shared structural variation underlying lineage and ecotype divergence. Here, we aim to characterize structural variants and to reconstruct their history and suspected role in ecotype formation. We generated a near chromosome-level genome assembly and described genome-wide patterns of diversity and divergence through the analysis of 112 whole-genome sequences from Atlantic, Mediterranean, and Black Sea populations. By also analysing linked-read sequencing data, we found evidence for two chromosomal inversions that were several megabases in length and showed contrasting allele frequency patterns between lineages and ecotypes across the species range. We reveal that these inversions represent ancient intraspecific polymorphisms, one likely being maintained by divergent selection and the other by pseudo-overdominance. A possible selective coupling between the two inversions was further supported by the absence of specific haplotype combinations and a putative functional interaction between the two inversions in reproduction. Lastly, we detected gene flux eroding divergence between inverted alleles at varying levels for the two inversions, with a likely impact on their dynamics and contribution to divergence and speciation.

2.
Mol Ecol ; 31(10): 2796-2813, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305041

RESUMO

Hydrothermal vents form archipelagos of ephemeral deep-sea habitats that raise interesting questions about the evolution and dynamics of the associated endemic fauna, constantly subject to extinction-recolonization processes. These metal-rich environments are coveted for the mineral resources they harbour, thus raising recent conservation concerns. The evolutionary fate and demographic resilience of hydrothermal species strongly depend on the degree of connectivity among and within their fragmented metapopulations. In the deep sea, however, assessing connectivity is difficult and usually requires indirect genetic approaches. Improved detection of fine-scale genetic connectivity is now possible based on genome-wide screening for genetic differentiation. Here, we explored population connectivity in the hydrothermal vent snail Ifremeria nautilei across its species range encompassing five distinct back-arc basins in the Southwest Pacific. The global analysis, based on 10,570 single nucleotide polymorphism (SNP) markers derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), depicted two semi-isolated and homogeneous genetic clusters. Demogenetic modeling suggests that these two groups began to diverge about 70,000 generations ago, but continue to exhibit weak and slightly asymmetrical gene flow. Furthermore, a careful analysis of outlier loci showed subtle limitations to connectivity between neighbouring basins within both groups. This finding indicates that migration is not strong enough to totally counterbalance drift or local selection, hence questioning the potential for demographic resilience at this latter geographical scale. These results illustrate the potential of large genomic data sets to understand fine-scale connectivity patterns in hydrothermal vents and the deep sea.


Assuntos
Fontes Hidrotermais , Animais , Ecossistema , Fluxo Gênico , Análise de Sequência de DNA , Caramujos/genética
3.
Mol Ecol ; 31(3): 736-751, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34192383

RESUMO

Transmissible cancers are parasitic malignant cell lineages that have acquired the ability to infect new hosts from the same species, or sometimes related species. First described in dogs and Tasmanian devils, transmissible cancers were later discovered in some marine bivalves affected by a leukaemia-like disease. In Mytilus mussels, two lineages of bivalve transmissible neoplasia (BTN) have been described to date (MtrBTN1 and MtrBTN2), both of which emerged in a Mytilus trossulus founder individual. Here, we performed extensive screening of genetic chimerism, a hallmark of transmissible cancer, by genotyping 106 single nucleotide polymorphisms of 5,907 European Mytilus mussels. Genetic analysis allowed us to simultaneously obtain the genotype of hosts - Mytilus edulis, M. galloprovincialis or hybrids - and the genotype of tumours of heavily infected individuals. In addition, a subset of 222 individuals were systematically genotyped and analysed by histology to screen for possible nontransmissible cancers. We detected MtrBTN2 at low prevalence in M. edulis, and also in M. galloprovincialis and hybrids although at a much lower prevalence. No MtrBTN1 or new BTN were found, but eight individuals with nontransmissible neoplasia were observed at a single polluted site on the same sampling date. We observed a diversity of MtrBTN2 genotypes that appeared more introgressed or more ancestral than MtrBTN1 and reference healthy M. trossulus individuals. The observed polymorphism is probably due to somatic null alleles caused by structural variations or point mutations in primer-binding sites leading to enhanced detection of the host alleles. Despite low prevalence, two sublineages divergent by 10% fixed somatic null alleles and one nonsynonymous mtCOI (mitochondrial cytochrome oxidase I) substitution are cospreading in the same geographical area, suggesting a complex diversification of MtrBTN2 since its emergence and host species shift.


Assuntos
Mytilus edulis , Mytilus , Neoplasias , Animais , Cães , Europa (Continente) , Mytilus/genética , Mytilus edulis/genética , Prevalência
4.
Mol Ecol ; 30(24): 6718-6732, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547149

RESUMO

Human-driven translocations of species have diverse evolutionary consequences such as promoting hybridization between previously geographically isolated taxa. This is well illustrated by the solitary tunicate, Ciona robusta, native to the North East Pacific and introduced in the North East Atlantic. It is now co-occurring with its congener Ciona intestinalis in the English Channel, and C. roulei in the Mediterranean Sea. Despite their long allopatric divergence, first and second generation crosses showed a high hybridization success between the introduced and native taxa in the laboratory. However, previous genetic studies failed to provide evidence of recent hybridization between C. robusta and C. intestinalis in the wild. Using SNPs obtained from ddRAD-sequencing of 397 individuals from 26 populations, we further explored the genome-wide population structure of the native Ciona taxa. We first confirmed results documented in previous studies, notably (i) a chaotic genetic structure at regional scale, and (ii) a high genetic similarity between C. roulei and C. intestinalis, which is calling for further taxonomic investigation. More importantly, and unexpectedly, we also observed a genomic hotspot of long introgressed C. robusta tracts into C. intestinalis genomes at several locations of their contact zone. Both the genomic architecture of introgression, restricted to a 1.5 Mb region of chromosome 5, and its absence in allopatric populations suggest introgression is recent and occurred after the introduction of the non-native species. Overall, our study shows that anthropogenic hybridization can be effective in promoting introgression breakthroughs between species at a late stage of the speciation continuum.


Assuntos
Ciona intestinalis , Genoma , Animais , Evolução Biológica , Ciona intestinalis/genética , Genômica , Humanos , Hibridização Genética
5.
J Evol Biol ; 34(1): 175-192, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33251632

RESUMO

Non-native species experience novel selection pressures in introduced environments and may interbreed with native lineages. Species introductions therefore provide opportunities to investigate repeated patterns of adaptation and introgression across replicated contact zones. Here, we investigate genetic parallelism between multiple introduced populations of the invasive marine mussel, Mytilus galloprovincialis, in the absence (South Africa and California) and presence of hybridization with a native congener (Mytilus planulatus in Batemans Bay and Sydney Harbour, Australia). Repeatability in post-introduction differentiation from native-range populations varied between genetically distinct Atlantic and Mediterranean lineages, with Atlantic-derived introductions displaying high differentiation (maxFST  > 0.4) and parallelism at outlier loci. Identification of long noncoding RNA transcripts (lncRNA) additionally allowed us to clarify that parallel responses are largely limited to protein-coding loci, with lncRNAs likely evolving under evolutionary constraints. Comparisons of independent hybrid zones revealed differential introgression most strongly in Batemans Bay, with an excess of M. galloprovincialis ancestry and resistance to introgression at loci differentiating parental lineages (M. planulatus and Atlantic M. galloprovincialis). Additionally, contigs putatively introgressed with divergent alleles from a closely related species, Mytilus edulis, showed stronger introgression asymmetries compared with genome-wide trends and also diverged in parallel in both Atlantic-derived introductions. These results suggest that divergent demographic histories experienced by introduced lineages, including pre-introduction introgression, influence contemporary admixture dynamics. Our findings build on previous investigations reporting contributions of historical introgression to intrinsic reproductive architectures shared between marine lineages and illustrate that interspecific introgression history can shape differentiation between colonizing populations and their hybridization with native congeners.


Assuntos
Evolução Biológica , Bivalves/genética , Introgressão Genética , Espécies Introduzidas , Animais , Bivalves/metabolismo , Fluxo Gênico , RNA Longo não Codificante/metabolismo , Transcriptoma
6.
J Evol Biol ; 34(1): 208-223, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045123

RESUMO

The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study 'replicated' instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.


Assuntos
Introgressão Genética , Especiação Genética , Mytilus/genética , Animais , Polimorfismo de Nucleotídeo Único
7.
Mol Biol Evol ; 35(5): 1092-1103, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390090

RESUMO

Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of AT↔GC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne.


Assuntos
Códon , Conversão Gênica , Insetos/genética , Seleção Genética , Mutação Silenciosa , Animais , Composição de Bases , Densidade Demográfica
8.
PLoS Biol ; 14(12): e2000234, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027292

RESUMO

Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids-the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation.


Assuntos
Variação Genética , Animais , Genética Populacional , Hibridização Genética , Modelos Biológicos
9.
Heredity (Edinb) ; 122(6): 770-784, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30675016

RESUMO

The Almeria-Oran Front (AOF) is a recognised hotspot of genetic differentiation in the sea, with genetic discontinuities reported in more than 50 species. The AOF is a barrier to dispersal and an ecological boundary; both can determine the position of these genetic breaks. However, the maintenance of genetic differentiation is likely reinforced by genetic barriers. A general drawback of previous studies is an insufficient density of sampling sites at the transition zone, with a conspicuous lack of samples from the southern coastline. We analysed the fine-scale genetic structure in the mussel Mytilus galloprovincialis using a few ancestry-informative loci previously identified from genome scans. We discovered a 600-km-wide mosaic hybrid zone eastward of the AOF along the Algerian coasts. This mosaic zone provides a new twist to our understanding of the Atlantic-Mediterranean transition because it demonstrates that the two lineages can live in sympatry with ample opportunities to interbreed in a large area, but they hardly do so. This implies that some form of reproductive isolation must exist to maintain the two genetic backgrounds locally cohesive. The mosaic zone ends with an abrupt genetic shift at a barrier to dispersal in the Gulf of Bejaia, Eastern Algeria. Simulations of endogenous or exogenous selection in models that account for the geography and hydrodynamic features of the region support the hypothesis that sister hybrid zones could have been differentially trapped at two alternative barriers to dispersal and/or environmental boundaries, at Almeria in the north and Bejaia in the south. A preponderantly unidirectional north-south gene flow next to the AOF can also maintain a patch of intrinsically maintained genetic background in the south and the mosaic structure, even in the absence of local adaptation. Our results concur with the coupling hypothesis that suggests that natural barriers can explain the position of genetic breaks, while their maintenance depends on genetic barriers.


Assuntos
Mytilus/genética , Adaptação Fisiológica , Argélia , Animais , Oceano Atlântico , Fluxo Gênico , Geografia , Hibridização Genética , Mar Mediterrâneo , Mytilus/fisiologia
10.
Mol Ecol ; 26(1): 59-76, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27447453

RESUMO

Speciation often involves repeated episodes of genetic contact between divergent populations before reproductive isolation (RI) is complete. Whole-genome sequencing (WGS) holds great promise for unravelling the genomic bases of speciation. We have studied two ecologically divergent, hybridizing species of the 'model tree' genus Populus (poplars, aspens, cottonwoods), Populus alba and P. tremula, using >8.6 million single nucleotide polymorphisms (SNPs) from WGS of population pools. We used the genomic data to (i) scan these species' genomes for regions of elevated and reduced divergence, (ii) assess key aspects of their joint demographic history based on genomewide site frequency spectra (SFS) and (iii) infer the potential roles of adaptive and deleterious coding mutations in shaping the genomic landscape of divergence. We identified numerous small, unevenly distributed genome regions without fixed polymorphisms despite high overall genomic differentiation. The joint SFS was best explained by ancient and repeated gene flow and allowed pinpointing candidate interspecific migrant tracts. The direction of selection (DoS) differed between genes in putative migrant tracts and the remainder of the genome, thus indicating the potential roles of adaptive divergence and segregating deleterious mutations on the evolution and breakdown of RI. Genes affected by positive selection during divergence were enriched for several functionally interesting groups, including well-known candidate 'speciation genes' involved in plant innate immunity. Our results suggest that adaptive divergence affects RI in these hybridizing species mainly through intrinsic and demographic processes. Integrating genomic with molecular data holds great promise for revealing the effects of particular genetic pathways on speciation.


Assuntos
Evolução Molecular , Fluxo Gênico , Populus/genética , Isolamento Reprodutivo , Genoma de Planta , Genômica , Polimorfismo de Nucleotídeo Único , Populus/classificação , Seleção Genética , Análise de Sequência de DNA , Árvores/classificação , Árvores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA