Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 190(1): 75-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24196280

RESUMO

BACKGROUND AND PURPOSE: Merkel cell carcinoma (MCC) is a rare, but highly malignant tumor of the skin. In case of systemic disease, possible therapeutic options include irradiation or chemotherapy. The aim of this study was to evaluate whether the flavonoid resveratrol enhances the effect of radiotherapy or chemotherapy in MCC cell lines. MATERIALS AND METHODS: The two MCC cell lines MCC13 and MCC26 were treated with increasing doses of resveratrol. Combination experiments were conducted with cisplatin and etoposide. Colony forming assays were performed after sequential irradiation with 1, 2, 3, 4, 6, and 8 Gy and apoptosis was assessed with flow cytometry. Expression of cancer drug targets was analyzed by real-time PCR array. RESULTS: Resveratrol is cytotoxic in MCC cell lines. Cell growth is inhibited by induction of apoptosis. The combination with cisplatin and etoposide resulted in a partially synergistic inhibition of cell proliferation. Resveratrol and irradiation led to a synergistic reduction in colony formation compared to irradiation alone. Evaluation of gene expression did not show significant difference between the cell lines. CONCLUSION: Due to its radiosensitizing effect, resveratrol seems to be a promising agent in combination with radiation therapy. The amount of chemosensitizing depends on the cell lines tested.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/terapia , Quimiorradioterapia/métodos , Estilbenos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cisplatino/administração & dosagem , Relação Dose-Resposta a Droga , Etoposídeo/administração & dosagem , Humanos , Resveratrol , Resultado do Tratamento
2.
Cell Death Dis ; 6: e1767, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25996294

RESUMO

Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF-α)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-ß-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.


Assuntos
Imidazóis/farmacologia , Necrose/tratamento farmacológico , Piridazinas/farmacologia , Pirimidinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Sulfonamidas/farmacologia , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas/genética , Células HEK293 , Células HT29 , Humanos , Indazóis , Células Jurkat , Células L , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA