Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(17): 9389-9409, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37078795

RESUMO

Ischemia-reperfusion injury (IRI), which describes the cell damage and death that occurs after blood and oxygen are restored to ischemic or hypoxic tissue, is a significant factor within the mortality rates of heart disease and stroke patients. At the cellular level, the return of oxygen triggers an increase in reactive oxygen species (ROS) and mitochondrial calcium (mCa2+) overload, which both contribute to cell death. Despite the widespread occurrence of IRI in different pathological conditions, there are currently no clinically approved therapeutic agents for its management. In this Perspective, we will briefly discuss the current therapeutic options for IRI and then describe in great detail the potential role and arising applications of metal-containing coordination and organometallic complexes for treating this condition. This Perspective categorizes these metal compounds based on their mechanisms of action, which include their use as delivery agents for gasotransmitters, inhibitors of mCa2+ uptake, and catalysts for the decomposition of ROS. Lastly, the challenges and opportunities for inorganic chemistry approaches to manage IRI are discussed.


Assuntos
Complexos de Coordenação , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Morte Celular , Metais , Oxigênio
2.
Eur J Inorg Chem ; 26(9)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37636126

RESUMO

The mitochondrial calcium uniporter (MCU) mediates uptake of calcium ions (Ca2+) into the mitochondria, a process that is vital for maintaining normal cellular function. Inhibitors of the MCU, the most promising of which are dinuclear ruthenium coordination compounds, have found use as both therapeutic agents and tools for studying the importance of this ion channel. In this study, six Co3+ cage compounds with sarcophagine-like ligands were assessed for their abilities to inhibit MCU-mediated mitochondrial Ca2+ uptake. These complexes were synthesized and characterized according to literature procedures and then investigated in cellular systems for their MCU-inhibitory activities. Among these six compounds, [Co(sen)]3+ (3, sen = 5-(4-amino-2-azabutyl)-5-methyl-3,7-diaza-1,9-nonanediamine) was identified to be a potent MCU inhibitor, with IC50 values of inhibition of 160 and 180 nM in permeabilized HeLa and HEK293T cells, respectively. Furthermore, the cellular uptake of compound 3 was determined, revealing moderate accumulation in cells. Most notably, 3 was demonstrated to operate in intact cells as an MCU inhibitor. Collectively, this work presents the viability of using cobalt coordination complexes as MCU inhibitors, providing a new direction for researchers to investigate in future studies.

3.
Inorg Chem ; 61(43): 17299-17312, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36260092

RESUMO

The mitochondrial calcium uniporter (MCU) is a transmembrane protein that resides on the inner membrane of the mitochondria and mediates calcium uptake into this organelle. Given the critical role of mitochondrial calcium trafficking in cellular function, inhibitors of this channel have arisen as tools for studying the biological relevance of this process and as potential therapeutic agents. In this study, four new analogues of the previously reported Ru-based MCU inhibitor [ClRu(NH3)4(µ-N)Ru(NH3)4Cl]Cl3 (Ru265) are reported. These compounds, which bear axial carboxylate ligands, are of the general formula [(RCO2)Ru(NH3)4(µ-N)Ru(NH3)4(O2CR)]X3, where X = NO3- or CF3SO3- and R = H (1), CH3 (2), CH2CH3 (3), and (CH2)2CH3 (4). These complexes were fully characterized by IR spectroscopy, NMR spectroscopy, and elemental analysis. X-ray crystal structures of 1 and 3 were obtained, revealing the expected presence of both the linear Ru(µ-N)Ru core and axial formate and propionate ligands. The axial carboxylate ligands of complexes 1-4 are displaced by water in buffered aqueous solution to give the aquated compound Ru265'. The kinetics of these processes were measured by 1H NMR spectroscopy, revealing half-lives that span 5.9-9.9 h at 37 °C. Complex 1 with axial formate ligands underwent aquation approximately twice as fast as the other compounds. In vitro cytotoxicity and mitochondrial membrane potential measurements carried out in HeLa and HEK293T cells demonstrated that none of these four complexes negatively affects cell viability or mitochondrial function. The abilities of 1-4 to inhibit mitochondrial calcium uptake in permeabilized HEK293T cells were assessed and compared to that of Ru265. Fresh solutions of 1-4 are approximately 2-fold less potent than Ru265 with IC50 values in the range of 14.7-19.1 nM. Preincubating 1-4 in aqueous buffers for longer time periods to allow for the aquation reactions to proceed increases their potency of mitochondrial uptake inhibition to match that of Ru265. This result indicates that 1-4 are aquation-activated prodrugs of Ru265'. Finally, 1-4 were shown to inhibit mitochondrial calcium uptake in intact, nonpermeabilized cells, revealing their value as tools and potential therapeutic agents for mitochondrial calcium-related disorders.


Assuntos
Cálcio , Pró-Fármacos , Humanos , Cálcio/metabolismo , Formiatos , Células HEK293 , Ligantes
4.
RSC Chem Biol ; 4(1): 84-93, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36685255

RESUMO

Dysregulation of mitochondrial calcium uptake mediated by the mitochondrial calcium uniporter (MCU) is implicated in several pathophysiological conditions. Dinuclear ruthenium complexes are effective inhibitors of the MCU and have been leveraged as both tools to study mitochondrial calcium dynamics and potential therapeutic agents. In this study, we report the synthesis and characterization of Os245 ([Os2(µ-N)(NH3)8Cl2]3+) which is the osmium-containing analogue of our previously reported ruthenium-based inhibitor Ru265. This complex and its aqua-capped analogue Os245' ([Os2(µ-N)(NH3)8(OH2)2]5+) are both effective inhibitors of the MCU in permeabilized and intact cells. In comparison to the ruthenium-based inhibitor Ru265 (k obs = 4.92 × 10-3 s-1), the axial ligand exchange kinetics of Os245 are two orders of magnitude slower (k obs = 1.63 × 10-5 s-1) at 37 °C. The MCU-inhibitory properties of Os245 and Os245' are different (Os245 IC50 for MCU inhibition = 103 nM; Os245' IC50 for MCU inhibition = 2.3 nM), indicating that the axial ligands play an important role in their interactions with this channel. We further show that inhibition of the MCU by these complexes protects primary cortical neurons against lethal oxygen-glucose deprivation. When administered in vivo to mice (10 mg kg-1), Os245 and Os245' induce seizure-like behaviors in a manner similar to the ruthenium-based inhibitors. However, the onset of these seizures is delayed, a possible consequence of the slower ligand substitution kinetics for these osmium complexes. These findings support previous studies that demonstrate inhibition of the MCU is a promising therapeutic strategy for the treatment of ischemic stroke, but also highlight the need for improved drug delivery strategies to mitigate the pro-convulsant effects of this class of complexes before they can be implemented as therapeutic agents. Furthermore, the slower ligand substitution kinetics of the osmium analogues may afford new strategies for the development and modification of this class of MCU inhibitors.

5.
Cell Rep ; 42(3): 112155, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857182

RESUMO

The most abundant cellular divalent cations, Mg2+ (mM) and Ca2+ (nM-µM), antagonistically regulate divergent metabolic pathways with several orders of magnitude affinity preference, but the physiological significance of this competition remains elusive. In mice consuming a Western diet, genetic ablation of the mitochondrial Mg2+ channel Mrs2 prevents weight gain, enhances mitochondrial activity, decreases fat accumulation in the liver, and causes prominent browning of white adipose. Mrs2 deficiency restrains citrate efflux from the mitochondria, making it unavailable to support de novo lipogenesis. As citrate is an endogenous Mg2+ chelator, this may represent an adaptive response to a perceived deficit of the cation. Transcriptional profiling of liver and white adipose reveals higher expression of genes involved in glycolysis, ß-oxidation, thermogenesis, and HIF-1α-targets, in Mrs2-/- mice that are further enhanced under Western-diet-associated metabolic stress. Thus, lowering mMg2+ promotes metabolism and dampens diet-induced obesity and metabolic syndrome.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Transporte de Cátions , Dieta , Dieta Hiperlipídica , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Obesidade/metabolismo , Termogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA