Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39056390

RESUMO

Machine-learning models based on a point-cloud representation of a physical object are ubiquitous in scientific applications and particularly well-suited to the atomic-scale description of molecules and materials. Among the many different approaches that have been pursued, the description of local atomic environments in terms of their discretized neighbor densities has been used widely and very successfully. We propose a novel density-based method, which involves computing "Wigner kernels." These are fully equivariant and body-ordered kernels that can be computed iteratively at a cost that is independent of the basis used to discretize the density and grows only linearly with the maximum body-order considered. Wigner kernels represent the infinite-width limit of feature-space models, whose dimensionality and computational cost instead scale exponentially with the increasing order of correlations. We present several examples of the accuracy of models based on Wigner kernels in chemical applications, for both scalar and tensorial targets, reaching an accuracy that is competitive with state-of-the-art deep-learning architectures. We discuss the broader relevance of these findings to equivariant geometric machine-learning.

2.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551818

RESUMO

Spherical harmonics provide a smooth, orthogonal, and symmetry-adapted basis to expand functions on a sphere, and they are used routinely in physical and theoretical chemistry as well as in different fields of science and technology, from geology and atmospheric sciences to signal processing and computer graphics. More recently, they have become a key component of rotationally equivariant models in geometric machine learning, including applications to atomic-scale modeling of molecules and materials. We present an elegant and efficient algorithm for the evaluation of the real-valued spherical harmonics. Our construction features many of the desirable properties of existing schemes and allows us to compute Cartesian derivatives in a numerically stable and computationally efficient manner. To facilitate usage, we implement this algorithm in sphericart, a fast C++ library that also provides C bindings, a Python API, and a PyTorch implementation that includes a GPU kernel.

3.
J Chem Phys ; 157(23): 234101, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36550032

RESUMO

Machine learning frameworks based on correlations of interatomic positions begin with a discretized description of the density of other atoms in the neighborhood of each atom in the system. Symmetry considerations support the use of spherical harmonics to expand the angular dependence of this density, but there is, as of yet, no clear rationale to choose one radial basis over another. Here, we investigate the basis that results from the solution of the Laplacian eigenvalue problem within a sphere around the atom of interest. We show that this generates a basis of controllable smoothness within the sphere (in the same sense as plane waves provide a basis with controllable smoothness for a problem with periodic boundaries) and that a tensor product of Laplacian eigenstates also provides a smooth basis for expanding any higher-order correlation of the atomic density within the appropriate hypersphere. We consider several unsupervised metrics of the quality of a basis for a given dataset and show that the Laplacian eigenstate basis has a performance that is much better than some widely used basis sets and competitive with data-driven bases that numerically optimize each metric. Finally, we investigate the role of the basis in building models of the potential energy. In these tests, we find that a combination of the Laplacian eigenstate basis and target-oriented heuristics leads to equal or improved regression performance when compared to both heuristic and data-driven bases in the literature. We conclude that the smoothness of the basis functions is a key aspect of successful atomic density representations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA