Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(9): 550, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31396767

RESUMO

A field experiment was conducted at Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India in the dry seasons of 2015 and 2016 to assess the water vapor flux (FH2O) and its relationship with other climatic variables. The FH2O and climatic variables were measured by an eddy covariance system and a micrometeorological observatory. Daily mean FH2O during the dry seasons of 2015 and 2016 were 0.009-0.092 g m-2 s-1 and 0.014-0.101 g m-2 s-1, respectively. Seasonal average FH2O was 14.6% higher in 2016 than that in 2015. Diurnal variation for FH2O showed a bell-shaped curve with its peak at 13:30-14:00 Indian Standard Time (IST) in both the years. Carbon dioxide flux was found higher with rise in FH2O. This relationship was stronger at higher vapor pressure deficit (VPD) (20 ≤ VPD ≤ 40 and VPD > 40 hPa). The FH2O showed significant positive correlation with latent heat flux, net radiation flux, photosynthatically active radiation, air, water and soil temperatures, shortwave down and upwell radiations, maximum and minimum temperatures, evaporation, and relative humidity in both the years. Principal component analysis showed that FH2O was very close to latent heat flux in both the years (Pearson correlation coefficient close to 1). The two-dimensional observation map of the principal component F1 and F2 showed the observations taken during the vegetative stage and panicle initiation stage, and flowering stage and maturity stage were closer to each other. It can be concluded that the most important climatic variables controlling the FH2O were latent heat of vaporization, net radiation, air temperature, soil temperatures, and water temperature.


Assuntos
Ciclo do Carbono/fisiologia , Monitoramento Ambiental/métodos , Oryza/química , Vapor/análise , Agricultura , Dióxido de Carbono/análise , Ecossistema , Índia , Análise de Componente Principal , Estações do Ano , Solo/química , Temperatura , Água/química
2.
Int J Biometeorol ; 62(8): 1375-1387, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29644433

RESUMO

It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest that the exogenous application of boron had a substantial effect on cell membrane stability, sugar mobilization, pollen viability, and spikelet fertility, hence the yield. The cultivars due to their variation in the tolerance level for high temperature stress behaved differently, and at high temperature stress, more response of the application of boron was seen in susceptible cultivars.


Assuntos
Boro , Temperatura Alta , Oryza/crescimento & desenvolvimento , Reprodução , Temperatura
3.
Environ Monit Assess ; 187(5): 296, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25913623

RESUMO

Integrated rice-fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice-fish, fish-fingerlings, fruits, vegetables, rice-fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice-fish refuge followed by rice-fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice-fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice-fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish-fingerlings enterprise, respectively.


Assuntos
Agricultura/métodos , Monitoramento Ambiental , Oryza/crescimento & desenvolvimento , Solo/química , Carbono/análise , Ecossistema , Nitrogênio , Microbiologia do Solo , Tempo , Urease , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA