Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Cell ; 169(6): 977-978, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575675

RESUMO

Modulating deep regions of the brain with noninvasive technology has challenged researchers for decades. In a new study, Grossman et al. leverage the emergence of a slowly oscillating "beat" from intersecting high-frequency electric fields to stimulate deep brain regions, opening a frontier in the biophysics and technology of brain stimulation.


Assuntos
Estimulação Encefálica Profunda , Estimulação Magnética Transcraniana , Encéfalo
2.
Mult Scler ; 30(11-12): 1490-1502, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39268655

RESUMO

BACKGROUND: Many individuals with progressive multiple sclerosis (PMS) are challenged by reduced manual dexterity and limited rehabilitation options. Transcranial direct current stimulation (tDCS) during motor training can improve rehabilitation outcomes. We developed a protocol for remotely supervising tDCS to deliver sessions of stimulation paired with training at home. OBJECTIVE: This study evaluated the effectiveness of at-home tDCS paired with manual dexterity training for individuals with PMS. METHODS: Sixty-five right-hand dominant participants with PMS and hand impairment were randomized to receive either active or sham M1-SO tDCS paired with manual dexterity training over 4 weeks. Clinical outcomes were measured by the changes in Nine-Hole Peg Test (9-HPT) and Dellon-Modified-Moberg-Pick-Up Test (DMMPUT). RESULTS: The intervention had high rates of adherence and completion (98% of participants completed at least 18 of 20 sessions). The active tDCS group demonstrated significant improvement for the left hand compared with baseline in 9-HPT (-5.85 ± 6.19 vs -4.23 ± 4.34, p = 0.049) and DMMPUT (-10.62 ± 8.46 vs -8.97 ± 6.18, p = 0.049). The active tDCS group reported improvements in multiple sclerosis (MS)-related quality of life (mean increase: 5.93 ± 13.04 vs -0.05 ± -8.27; p = 0.04). CONCLUSION: At-home tDCS paired with manual dexterity training is effective for individuals with PMS, with M1-SO tDCS enhancing training outcomes and offering a promising intervention for improving and preserving hand dexterity.


Assuntos
Terapia por Exercício , Esclerose Múltipla Crônica Progressiva , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Feminino , Pessoa de Meia-Idade , Masculino , Esclerose Múltipla Crônica Progressiva/reabilitação , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Esclerose Múltipla Crônica Progressiva/terapia , Método Duplo-Cego , Adulto , Terapia por Exercício/métodos , Mãos/fisiopatologia , Idoso , Resultado do Tratamento , Destreza Motora/fisiologia , Terapia Combinada
3.
J ECT ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185880

RESUMO

ABSTRACT: Attempts to dissociate electroconvulsive therapy (ECT) therapeutic efficacy from cognitive side effects of ECT include modifying electrode placement, but traditional electrode placements employing 2 large electrodes are inherently nonfocal, limiting the ability to selectively engage targets associated with clinical benefit while avoiding nontargets associated with adverse side effects. Limited focality represents a technical limitation of conventional ECT, and there is growing evidence that the spatial distribution of the ECT electric fields induced in the brain drives efficacy and side effects. Computational models can be used to predict brain current flow patterns for existing and novel ECT montages. Using finite element method simulations (under quasi-static, nonadaptive assumptions, 800-mA total current), the electric fields generated in the superficial cortex and subcortical structures were predicted for the following traditional ECT montages (bilateral temporal, bifrontal, right unilateral) and experimental montages (focal electrically administered seizure therapy, lateralized high-definition [HD]-ECT, unilateral 4 × 1-ring HD-ECT, bilateral 4 × 1-ring HD-ECT, and a multipolar HD-ECT). Peak brain current density in regions of interest was quantified. Conventional montages (bilateral bifrontal, right unilateral) each produce distinct but diffuse and deep current flow. Focal electrically administered seizure therapy and lateralized HD-ECT produce unique, lateralized current flow, also impacting specific deep regions. A 4 × 1-ring HD-ECT restricts current flow to 1 (unilateral) or 2 (bilateral) cortical regions. Multipolar HD-ECT shows optimization to a specific target set. Future clinical trials are needed to determine whether enhanced control over current distribution is achieved with these experimental montages, and the resultant seizures, improve the risk/benefit ratio of ECT.

4.
Neuromodulation ; 27(6): 1020-1025, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970616

RESUMO

OBJECTIVES: The aim of this study was to present key technologic and regulatory milestones in spinal cord stimulation (SCS) for managing chronic pain on a narrative timeline with visual representation, relying on original sources to the extent possible. MATERIALS AND METHODS: We identified technical advances in SCS that facilitated and enhanced treatment on the basis of scientific publications and approvals from the United States (US) Food and Drug Administration (FDA). We presented milestones limited to first use in key indications and in the context of new technology validation. We focused primarily on pain management, but other indications (eg, motor disorder in multiple sclerosis) were included when they affected technology development. RESULTS: We developed a comprehensive visual and narrative timeline of SCS technology and US FDA milestones. Since its conception in the 1960s, the science and technology of SCS neuromodulation have continuously evolved. Advances span lead design (from paddle-type to percutaneous, and increased electrode contacts) and stimulator technology (from wireless power to internally powered and rechargeable, with miniaturized components, and programmable multichannel devices), with expanding stimulation program flexibility (such as burst and kilohertz stimulation frequencies), as well as usage features (such as remote programming and magnetic resonance imaging conditional compatibility). CONCLUSIONS: This timeline represents the evolution of SCS technology alongside expanding FDA-approved indications for use.


Assuntos
Estimulação da Medula Espinal , United States Food and Drug Administration , Estimulação da Medula Espinal/métodos , Estimulação da Medula Espinal/história , Estimulação da Medula Espinal/instrumentação , Estados Unidos , Humanos , História do Século XX , Dor Crônica/terapia , História do Século XXI , Manejo da Dor/métodos , Manejo da Dor/história , Manejo da Dor/tendências
5.
Neuromodulation ; 26(7): 1362-1370, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030146

RESUMO

INTRODUCTION: High-density (HD) spinal cord stimulation (SCS) delivers higher charge per time by increasing frequency and/or pulse duration, thus increasing stimulation energy. Previously, through phantom studies and computational modeling, we demonstrated that stimulation energy drives spinal tissue heating during kHz SCS. In this study, we predicted temperature increases in the spinal cord by HD SCS, the first step in considering the potential impact of heating on clinical outcomes. MATERIALS AND METHODS: We adapted a high-resolution computer-aided design-derived spinal cord model, both with and without a lead encapsulation layer, and applied bioheat transfer finite element method multiphysics to predict temperature increases during SCS. We simulated HD SCS using a commercial SCS lead (eight contacts) with clinically relevant intensities (voltage-controlled: 0.5-7 Vrms) and electrode configuration (proximal bipolar, distal bipolar, guarded tripolar [+-+], and guarded quadripolar [+--+]). Results were compared with the conventional and 10-kHz SCS (current-controlled). RESULTS: HD SCS waveform energy (reflecting charge per second) governs joule heating in the spinal tissues, increasing temperature supralinearly with stimulation root mean square. Electrode configuration and tissue properties (an encapsulation layer) influence peak tissue temperature increase-but in a manner distinct for voltage-controlled (HD SCS) compared with current-controlled (conventional/10-kHz SCS) stimulation. Therefore, depending on conditions, HD SCS could produce heating greater than that of 10-kHz SCS. For example, with an encapsulation layer, using guarded tripolar configuration (500-Hz, 250-µs pulse width, 5-Vpeak HD SCS), the peak temperature increases were 0.36 °C at the spinal cord and 1.78 °C in the epidural space. CONCLUSIONS: As a direct consequence of the higher charge, HD SCS increases tissue heating; voltage-controlled stimulation introduces special dependencies on electrode configuration and lead encapsulation (reflected in impedance). If validated with an in vivo measurement as a possible mechanism of action of SCS, bioheat models of HD SCS serve as tools for programming optimization.


Assuntos
Estimulação da Medula Espinal , Humanos , Estimulação da Medula Espinal/métodos , Calefação , Coluna Vertebral , Medula Espinal/fisiologia , Eletrodos
6.
Neuromodulation ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37598327

RESUMO

OBJECTIVES: When administered in repeated daily doses, transcranial direct current stimulation (tDCS) directed to the prefrontal cortex has cumulative efficacy for the treatment of depression. Depression can be marked by altered processing of emotionally salient information. An acute marker of response to tDCS may be measured as an immediate change in emotional information processing. Using an easily administered web-based task, we tested immediate changes in emotional information processing in acute response to tDCS in participants with and without depression. MATERIALS AND METHODS: We enrolled n = 21 women with mild-to-moderate depression and n = 20 controls without depression to complete a web-based visual search task before and after 30 minutes of tDCS directed to the prefrontal cortex. The timed task required participants to identify a target face among arrays showing sad, neutral, or mixed (distractor) expressions. RESULTS: At baseline, as predicted, the participants with depression differed from those without in emotional processing speed (mean z score difference -0.66 ± 0.27, p = 0.022) and accuracy in identifying sad stimuli (error rate: 4.4% vs 1.8%, p = 0.039). In response to tDCS, the participants with depression became significantly faster on the distractor condition (pre- vs post-tDCS z scores: -0.45 ± 0.65 vs -0.85 ± 0.65, p = 0.009), suggesting a specific reduction in bias toward negative emotional information. In response to tDCS, the depressed group also had significant improvements in self-reported mood (increased happy, decreased sad and anxious mood). CONCLUSIONS: Participants with depression vs those without were differentiated by their performance of the visual search task at baseline and in response to tDCS. Given that measurable effects on depression scales may require weeks of tDCS treatments, acute change in emotional information processing can serve as an easily obtainable marker of depression and its response to tDCS. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT05188248.

7.
Ergonomics ; 66(4): 492-505, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35766283

RESUMO

The negative effect of prolonged cognitive demands on psychomotor skills in athletes has been demonstrated. Transcranial direct current stimulation (tDCS) could be used to mitigate this effect. This study examined the effects of tDCS over the left dorsolateral prefrontal cortex (DLPFC) during a 30-min inhibitory Stroop task on cognitive and shooting performances of professional female basketball players. Following a randomised, double-blinded, sham-controlled, cross-over design, players were assigned to receive anodal tDCS (a-tDCS, 2 mA for 20 min) or sham-tDCS in two different sessions. Data from 8 players were retained for analysis. Response Time decreased significantly over time (p < 0.001; partial η2 = 0.44; no effect of condition, or condition vs. time interaction). No difference in mean accuracy and shooting performance was observed between tDCS conditions. The results suggest that a-tDCS exert no additional benefits in reducing the negative effects of prolonged cognitive demands on technical performance compared to sham (placebo).Practitioner summary: Prolonged cognitive demands can negatively affect the athletes' performance. We tested whether transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) could attenuate these effects on cognitive and shooting performance in professional female basketball players. However, tDCS did not exert any additional benefits compared to sham.Abbreviations: tDCS: transcranial direct current stimulation; a-tDCS: anodal transcranial direct current stimulation; PFC: prefrontal cortex; DLPFC: dorsolateral prefrontal cortex; PCT: prolonged cognitive task; TT: time trial; RT: response time; NASA-TLX: National Aeronautics and Space Administration Task Load Index; RPE: ratings of perceived exertion; CR-10 scale: category rating scale; EEG: electroencephalogram; AU: arbitrary units.


Assuntos
Basquetebol , Estimulação Transcraniana por Corrente Contínua , Feminino , Humanos , Cognição/fisiologia , Eletroencefalografia , Córtex Pré-Frontal/fisiologia , Estudos Cross-Over , Interação do Duplo Vínculo
8.
Neuromodulation ; 25(8): 1299-1311, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33340187

RESUMO

OBJECTIVES: We consider two consequences of brain capillary ultrastructure in neuromodulation. First, blood-brain barrier (BBB) polarization as a consequence of current crossing between interstitial space and the blood. Second, interstitial current flow distortion around capillaries impacting neuronal stimulation. MATERIALS AND METHODS: We developed computational models of BBB ultrastructure morphologies to first assess electric field amplification at the BBB (principle 1) and neuron polarization amplification by the presence of capillaries (principle 2). We adapt neuron cable theory to develop an analytical solution for maximum BBB polarization sensitivity. RESULTS: Electrical current crosses between the brain parenchyma (interstitial space) and capillaries, producing BBB electric fields (EBBB) that are >400x of the average parenchyma electric field (EBRAIN), which in turn modulates transport across the BBB. Specifically, for a BBB space constant (λBBB) and wall thickness (dth-BBB), the analytical solution for maximal BBB electric field (EABBB) is given as: (EBRAIN × λBBB)/dth-BBB. Electrical current in the brain parenchyma is distorted around brain capillaries, amplifying neuronal polarization. Specifically, capillary ultrastructure produces ∼50% modulation of the EBRAIN over the ∼40 µm inter-capillary distance. The divergence of EBRAIN (Activating function) is thus ∼100 kV/m2 per unit EBRAIN. CONCLUSIONS: BBB stimulation by principle 1 suggests novel therapeutic strategies such as boosting metabolic capacity or interstitial fluid clearance. Whereas the spatial profile of EBRAIN is traditionally assumed to depend only on macroscopic anatomy, principle 2 suggests a central role for local capillary ultrastructure-which impact forms of neuromodulation including deep brain stimulation (DBS), spinal cord stimulation (SCS), transcranial magnetic stimulation (TMS), electroconvulsive therapy (ECT), and transcranial electrical stimulation (tES)/transcranial direct current stimulation (tDCS).


Assuntos
Eletroconvulsoterapia , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Neurônios
9.
Int J Neuropsychopharmacol ; 24(4): 256-313, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32710772

RESUMO

BACKGROUND: Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE: We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS: Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS: Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION: All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.


Assuntos
Encefalopatias/terapia , Transtornos Mentais/terapia , Dor/reabilitação , Guias de Prática Clínica como Assunto/normas , Estimulação Transcraniana por Corrente Contínua/normas , Medicina Baseada em Evidências , Humanos
10.
Mol Psychiatry ; 25(4): 896-905, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692610

RESUMO

Schizophrenia is a severe neurodevelopmental psychiatric affliction manifested behaviorally at late adolescence/early adulthood. Current treatments comprise antipsychotics which act solely symptomatic, are limited in their effectiveness and often associated with side-effects. We here report that application of non-invasive transcranial direct current stimulation (tDCS) during adolescence, prior to schizophrenia-relevant behavioral manifestation, prevents the development of positive symptoms and related neurobiological alterations in the maternal immune stimulation (MIS) model of schizophrenia.


Assuntos
Lobo Frontal/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/terapia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Estimulação Transcraniana por Corrente Contínua/métodos
11.
Neuromodulation ; 24(8): 1327-1335, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31225695

RESUMO

OBJECTIVE: A recently introduced Spinal Cord Stimulation (SCS) system operates at 10 kHz, faster than conventional SCS systems, resulting in significantly more power delivered to tissues. Using a SCS heat phantom and bioheat multi-physics model, we characterized tissue temperature increases by this 10 kHz system. We also evaluated its Implanted Pulse Generator (IPG) output compliance and the role of impedance in temperature increases. MATERIALS AND METHODS: The 10 kHz SCS system output was characterized under resistive loads (1-10 KΩ). Separately, fiber optic temperature probes quantified temperature increases (ΔTs) around the SCS lead in specially developed heat phantoms. The role of stimulation Level (1-7; ideal pulse peak-to-peak of 1-7mA) was considered, specifically in the context of stimulation current Root Mean Square (RMS). Data from the heat phantom were verified with the SCS heat-transfer models. A custom high-bandwidth stimulator provided 10 kHz pulses and sinusoidal stimulation for control experiments. RESULTS: The 10 kHz SCS system delivers 10 kHz biphasic pulses (30-20-30 µs). Voltage compliance was 15.6V. Even below voltage compliance, IPG bandwidth attenuated pulse waveform, limiting applied RMS. Temperature increased supralinearly with stimulation Level in a manner predicted by applied RMS. ΔT increases with Level and impedance until stimulator compliance was reached. Therefore, IPG bandwidth and compliance dampen peak heating. Nonetheless, temperature increases predicted by bioheat multi-physic models (ΔT = 0.64°C and 1.42°C respectively at Level 4 and 7 at the cervical segment; ΔT = 0.68°C and 1.72°C respectively at Level 4 and 7 at the thoracic spinal cord)-within ranges previously reported to effect neurophysiology. CONCLUSIONS: Heating of spinal tissues by this 10 kHz SCS system theoretically increases quickly with stimulation level and load impedance, while dampened by IPG pulse bandwidth and voltage compliance limitations. If validated in vivo as a mechanism of kHz SCS, bioheat models informed by IPG limitations allow prediction and optimization of temperature changes.


Assuntos
Estimulação da Medula Espinal , Temperatura Alta , Humanos , Imagens de Fantasmas , Medula Espinal , Temperatura
12.
Hum Brain Mapp ; 41(7): 1950-1967, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31872943

RESUMO

Understanding and reducing variability of response to transcranial direct current stimulation (tDCS) requires measuring what factors predetermine sensitivity to tDCS and tracking individual response to tDCS. Human trials, animal models, and computational models suggest structural traits and functional states of neural systems are the major sources of this variance. There are 118 published tDCS studies (up to October 1, 2018) that used fMRI as a proxy measure of neural activation to answer mechanistic, predictive, and localization questions about how brain activity is modulated by tDCS. FMRI can potentially contribute as: a measure of cognitive state-level variance in baseline brain activation before tDCS; inform the design of stimulation montages that aim to target functional networks during specific tasks; and act as an outcome measure of functional response to tDCS. In this systematic review, we explore methodological parameter space of tDCS integration with fMRI spanning: (a) fMRI timing relative to tDCS (pre, post, concurrent); (b) study design (parallel, crossover); (c) control condition (sham, active control); (d) number of tDCS sessions; (e) number of follow up scans; (f) stimulation dose and combination with task; (g) functional imaging sequence (BOLD, ASL, resting); and (h) additional behavioral (cognitive, clinical) or quantitative (neurophysiological, biomarker) measurements. Existing tDCS-fMRI literature shows little replication across these permutations; few studies used comparable study designs. Here, we use a representative sample study with both task and resting state fMRI before and after tDCS in a crossover design to discuss methodological confounds. We further outline how computational models of current flow should be combined with imaging data to understand sources of variability. Through the representative sample study, we demonstrate how modeling and imaging methodology can be integrated for individualized analysis. Finally, we discuss the importance of conducting tDCS-fMRI with stimulation equipment certified as safe to use inside the MR scanner, and of correcting for image artifacts caused by tDCS. tDCS-fMRI can address important questions on the functional mechanisms of tDCS action (e.g., target engagement) and has the potential to support enhancement of behavioral interventions, provided studies are designed rationally.


Assuntos
Imageamento por Ressonância Magnética/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição/fisiologia , Humanos , Desempenho Psicomotor/fisiologia
13.
Neurol Sci ; 41(7): 1781-1789, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32040791

RESUMO

BACKGROUND: During transcranial direct current stimulation (tDCS), the amount and distribution of current that reaches the brain depends on individual anatomy. Many progressive neurodegenerative diseases are associated with cortical atrophy, but the importance of individual brain atrophy during tDCS in patients with progressive atrophy, including primary progressive aphasia (PPA), remains unclear. OBJECTIVE: In the present study, we addressed the question whether brain anatomy in patients with distinct cortical atrophy patterns would impact brain current intensity and distribution during tDCS over the left IFG. METHOD: We developed state-of-the-art, gyri-precise models of three subjects, each representing a variant of primary progressive aphasia: non-fluent variant PPA (nfvPPA), semantic variant PPA (svPPA), and logopenic variant PPA (lvPPA). We considered two exemplary montages over the left inferior frontal gyrus (IFG): a conventional pad montage (anode over F7, cathode over the right cheek) and a 4 × 1 high-definition tDCS montage. We further considered whether local anatomical features, specifically distance of the cortex to skull, can directly predict local electric field intensity. RESULTS: We found that the differences in brain current flow across the three PPA variants fall within the distribution of anatomically typical adults. While clustering of electric fields was often around individual gyri or sulci, the minimal distance from the gyri/sulci to skull was not correlated with electric field intensity. CONCLUSION: Limited to the conditions and assumptions considered here, this argues against a specific need to adjust the tDCS montage for these patients any more than might be considered useful in anatomically typical adults. Therefore, local atrophy does not, in isolation, reliably predict local electric field. Rather, our results are consistent with holistic head anatomy influencing brain current flow, with tDCS producing diffuse and individualized brain current flow patterns and HD-tDCS producing targeted brain current flow across individuals.


Assuntos
Afasia Primária Progressiva , Doenças Neurodegenerativas , Estimulação Transcraniana por Corrente Contínua , Adulto , Afasia Primária Progressiva/diagnóstico por imagem , Afasia Primária Progressiva/terapia , Atrofia , Encéfalo/diagnóstico por imagem , Humanos
14.
Neuromodulation ; 23(4): 489-495, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32058634

RESUMO

OBJECTIVES: Early clinical trials suggest that deep brain stimulation at kilohertz frequencies (10 kHz-DBS) may be effective in improving motor symptoms in patients with movement disorders. The 10 kHz-DBS can deliver significantly more power in tissue compared to conventional frequency DBS, reflecting increased pulse compression (duty cycle). We hypothesize that 10 kHz-DBS modulates neuronal function through moderate local tissue heating, analogous to kilohertz spinal cord stimulation (10 kHz-SCS). To establish the role of tissue heating in 10 kHz-DBS (30 µs, 10 kHz, at intensities of 3-7 mApeak ), a decisive first step is to characterize the range of temperature changes during clinical kHz-DBS protocols. MATERIALS AND METHODS: We developed a high-resolution magnetic resonance imaging-derived DBS model incorporating joule-heat coupled bio-heat multi-physics to establish the role of tissue heating. Volume of tissue activated (VTA) under assumptions of activating function (for 130 Hz) or heating (for 10 kHz) based neuromodulation are contrasted. RESULTS: DBS waveform power (waveform RMS) determined joule heating at the deep brain tissues. Peak heating was supralinearly dependent on stimulation RMS. The 10 kHz-DBS stimulation with 2.3 to 5.4 mARMS (corresponding to 3 to 7 mApeak ) produced 0.10 to 1.38°C heating at the subthalamic nucleus (STN) target under standard tissue parameters. Maximum temperature increases were predicted inside the electrode encapsulation layer (enCAP) with 2.3 to 5.4 mARMS producing 0.13 to 1.87°C under standard tissue parameters. Tissue parameter analysis predicted STN heating was especially sensitive (ranging from 0.44 to 1.35°C at 3.8 mARMS ) to decreasing enCAP electrical conductivity and decreasing STN thermal conductivity. CONCLUSIONS: Subject to validation with in vivo measurements, neuromodulation through a heating mechanism of action by 10 kHz-DBS can indicate novel therapeutic pathways and strategies for dose optimization.


Assuntos
Encéfalo , Estimulação Encefálica Profunda/métodos , Análise de Elementos Finitos , Modelos Neurológicos , Temperatura Corporal , Humanos
15.
J Physiol ; 597(8): 2131-2137, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30816558

RESUMO

Characterizing the cellular targets of kHz (1-10 kHz) electrical stimulation remains a pressing topic in neuromodulation because expanding interest in clinical application of kHz stimulation has surpassed mechanistic understanding. The presumed cellular targets of brain stimulation do not respond to kHz frequencies according to conventional electrophysiology theory. Specifically, the low-pass characteristics of cell membranes are predicted to render kHz stimulation inert, especially given the use of limited-duty-cycle biphasic pulses. Precisely because kHz frequencies are considered supra-physiological, conventional instruments designed for neurophysiological studies such as stimulators, amplifiers and recording microelectrodes do not operate reliably at these high rates. Moreover, for pulsed waveforms, the signal frequency content is well above the pulse repetition rate. Thus, the very tools used to characterize the effects of kHz electrical stimulation may themselves be confounding factors. We illustrate custom equipment design that supports reliable electrophysiological recording during kHz-rate stimulation. Given the increased importance of kHz stimulation in clinical domains and compelling possibilities that mechanisms of actions may reflect yet undiscovered neurophysiological phenomena, attention to suitable performance of electrophysiological equipment is pivotal.


Assuntos
Estimulação Elétrica/instrumentação , Fenômenos Eletrofisiológicos , Microeletrodos
16.
Stroke ; 50(10): 2892-2901, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31480966

RESUMO

Background and Purpose- Brain electrical stimulation, widely studied to facilitate recovery from stroke, has also been reported to confer direct neuroprotection in preclinical models of acute cerebral ischemia. Systematic review of controlled preclinical acute cerebral ischemia studies would aid in planning for initial human clinical trials. Methods- A systematic Medline search identified controlled, preclinical studies of central nervous system electrical stimulation in acute cerebral ischemia. Studies were categorized among 6 stimulation strategies. Three strategies applied different stimulation types to tissues within the ischemic zone (cathodal hemispheric stimulation [CHS], anodal hemispheric stimulation, and pulsed hemispheric stimulation), and 3 strategies applied deep brain stimulation to different neuronal targets remote from the ischemic zone (fastigial nucleus stimulation, subthalamic vasodilator area stimulation, and dorsal periaqueductal gray stimulation). Random-effects meta-analysis assessed electrical stimulation modification of final infarct volume. Study-level risk of bias and intervention-level readiness-for-translation were assessed using formal rating scales. Results- Systematic search identified 28 experiments in 21 studies, including a total of 350 animals, of electrical stimulation in preclinical acute cerebral ischemia. Overall, in animals undergoing electrical stimulation, final infarct volumes were reduced by 37% (95% CI, 34%-40%; P<0.001), compared with control. There was evidence of heterogeneity of efficacy among stimulation strategies (I2=93.1%, Pheterogeneity<0.001). Among the within-ischemic zone stimulation strategies, only CHS significantly reduced the infarct volume (27 %; 95% CI, 22%-33%; P<0.001); among the remote-from ischemic zone approaches, all (fastigial nucleus stimulation, subthalamic vasodilator area stimulation, and dorsal periaqueductal gray stimulation) reduced infarct volumes by approximately half. On formal rating scales, CHS studies had the lowest risk of bias, and CHS had the highest overall quality of intervention-level evidence supporting readiness to proceed to clinical testing. Conclusions- Electrical stimulation reduces final infarct volume across preclinical studies. CHS shows the most robust evidence and is potentially appropriate for progression to early-stage human clinical trial testing as a promising neuroprotective intervention.


Assuntos
Isquemia Encefálica/patologia , Estimulação Elétrica/métodos , Acidente Vascular Cerebral/patologia , Animais , Modelos Animais de Doenças , Camundongos
17.
Neuroimage ; 185: 408-424, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30321643

RESUMO

Online imaging and neuromodulation is invalid if stimulation distorts measurements beyond the point of accurate measurement. In theory, combining transcranial Direct Current Stimulation (tDCS) with electroencephalography (EEG) is compelling, as both use non-invasive electrodes and image-guided dose can be informed by the reciprocity principle. To distinguish real changes in EEG from stimulation artifacts, prior studies applied conventional signal processing techniques (e.g. high-pass filtering, ICA). Here, we address the assumptions underlying the suitability of these approaches. We distinguish physiological artifacts - defined as artifacts resulting from interactions between the stimulation induced voltage and the body and so inherent regardless of tDCS or EEG hardware performance - from methodology-related artifacts - arising from non-ideal experimental conditions or non-ideal stimulation and recording equipment performance. Critically, we identify inherent physiological artifacts which are present in all online EEG-tDCS: 1) cardiac distortion and 2) ocular motor distortion. In conjunction, non-inherent physiological artifacts which can be minimized in most experimental conditions include: 1) motion and 2) myogenic distortion. Artifact dynamics were analyzed for varying stimulation parameters (montage, polarity, current) and stimulation hardware. Together with concurrent physiological monitoring (ECG, respiration, ocular, EMG, head motion), and current flow modeling, each physiological artifact was explained by biological source-specific body impedance changes, leading to incremental changes in scalp DC voltage that are significantly larger than real neural signals. Because these artifacts modulate the DC voltage and scale with applied current, they are dose specific such that their contamination cannot be accounted for by conventional experimental controls (e.g. differing stimulation montage or current as a control). Moreover, because the EEG artifacts introduced by physiologic processes during tDCS are high dimensional (as indicated by Generalized Singular Value Decomposition- GSVD), non-stationary, and overlap highly with neurogenic frequencies, these artifacts cannot be easily removed with conventional signal processing techniques. Spatial filtering techniques (GSVD) suggest that the removal of physiological artifacts would significantly degrade signal integrity. Physiological artifacts, as defined here, would emerge only during tDCS, thus processing techniques typically applied to EEG in the absence of tDCS would not be suitable for artifact removal during tDCS. All concurrent EEG-tDCS must account for physiological artifacts that are a) present regardless of equipment used, and b) broadband and confound a broad range of experiments (e.g. oscillatory activity and event related potentials). Removal of these artifacts requires the recognition of their non-stationary, physiology-specific dynamics, and individualized nature. We present a broad taxonomy of artifacts (non/stimulation related), and suggest possible approaches and challenges to denoising online EEG-tDCS stimulation artifacts.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Encéfalo/fisiologia , Simulação por Computador , Feminino , Humanos , Masculino , Adulto Jovem
18.
Int J Obes (Lond) ; 43(10): 2119-2124, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30538282

RESUMO

Human neuroimaging studies have consistently reported changes in cerebellar function and integrity in association with obesity. To date, however, the nature of this link has not been studied directly. Emerging evidence suggests a role for the cerebellum in higher cognitive functions through reciprocal connections with the prefrontal cortex. The purpose of this exploratory study was to examine appetite changes associated with noninvasive prefronto-cerebellar neuromodulation in obesity. Totally, 12 subjects with class I obesity (mean body mass index 32.9 kg/m2) underwent a randomized, single-blinded, sham-controlled, crossover study, during which they received transcranial direct current stimulation ((tDCS); active/sham) aimed at simultaneously enhancing the activity of the prefrontal cortex and decreasing the activity of the cerebellum. Changes in appetite (state and food-cue-triggered) and performance in a food-modified working memory task were evaluated. We found that active tDCS caused an increase in hunger and desire to eat following food-cue exposure. In line with these data, subjects also tended to make more errors during the working memory task. No changes in basic motor performance occurred. This study represents the first demonstration that prefronto-cerebellar neuromodulation can influence appetite in individuals with obesity. While preliminary, our findings support a potential role for prefronto-cerebellar pathways in the behavioral manifestations of obesity.


Assuntos
Apetite/fisiologia , Cerebelo , Comportamento Alimentar/fisiologia , Obesidade/fisiopatologia , Obesidade/terapia , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , Neurorretroalimentação , Neuroimagem , Projetos Piloto , Espanha/epidemiologia , Resultado do Tratamento
19.
Cereb Cortex ; 28(8): 2786-2794, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655149

RESUMO

Understanding which cellular compartments are influenced during neuromodulation underpins any rational effort to explain and optimize outcomes. Axon terminals have long been speculated to be sensitive to polarization, but experimentally informed models for CNS stimulation are lacking. We conducted simultaneous intracellular recording from the neuron soma and axon terminal (blebs) during extracellular stimulation with weak sustained (DC) uniform electric fields in mouse cortical slices. Use of weak direct current stimulation (DCS) allowed isolation and quantification of changes in axon terminal biophysics, relevant to both suprathreshold (e.g., deep brain stimulation, spinal cord stimulation, and transcranial magnetic stimulation) and subthreshold (e.g., transcranial DCS and transcranial alternating current stimulation) neuromodulation approaches. Axon terminals polarized with sensitivity (mV of membrane polarization per V/m electric field) 4 times than somas. Even weak polarization (<2 mV) of axon terminals significantly changes action potential dynamics (including amplitude, duration, conduction velocity) in response to an intracellular pulse. Regarding a cellular theory of neuromodulation, we explain how suprathreshold CNS stimulation activates the action potential at terminals while subthreshold approaches modulate synaptic efficacy through axon terminal polarization. We demonstrate that by virtue of axon polarization and resulting changes in action potential dynamics, neuromodulation can influence analog-digital information processing.


Assuntos
Córtex Cerebral/citologia , Potenciais Evocados/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Fatores Etários , Animais , Biofísica , Polaridade Celular/fisiologia , Estimulação Elétrica , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Técnicas de Patch-Clamp
20.
J Neuroeng Rehabil ; 16(1): 141, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730494

RESUMO

Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.


Assuntos
Atletas , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Voluntários Saudáveis , Humanos , Aprendizagem , Córtex Motor/fisiopatologia , Doenças do Sistema Nervoso/reabilitação , Doenças do Sistema Nervoso/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA