Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 49(18): 6529-6554, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955529

RESUMO

Triplet-triplet annihilation based molecular photon upconversion (TTA-UC) is an exciting research area for a broad range of photonic applications due to its tunable spectral range and possible operation at non-coherent solar irradiance. Most of the TTA-UC studies are limited to Visible to Visible (Vis to Vis) energy upconversion. However, for several practical photonic applications, efficient near infrared (NIR) to Vis upconversion is preferred. Examples include, (i) photovoltaics where TTA-UC could lead to utilization of a larger part of the solar spectrum and (ii) in NIR stimulated biological applications where the deep penetration and non-invasive nature of NIR light coupled to TTA-UC offers new opportunities. Although, NIR to Vis TTA-UC is known since 2007, the recent five years have witnessed quite a progress in terms of the development of new chromophores, hybrid systems and fabrication techniques to increase the UC quantum yield at low excitation intensity. With this tutorial review we are reviewing recent progress, identifying existing challenges and discus possible future directions and opportunities.

2.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29251388

RESUMO

The efficient synthesis of a new solution-processable n-type conjugated polymer network (PNT1) is reported through palladium-catalyzed Stille cross-coupling reaction conditions following the A3 + B2 synthetic approach. A benzo[1,2-b:3,4-b':5,6-b″]trithiophene derivative is used as the A3 knot and an alkyl functionalized naphthalenediimide is utilized as the B2 linker. The thermal, optical, and electrochemical properties are examined in detail, showing high thermal stability, absorbance in the visible part of the solar spectrum, and reversible reduction characteristics similar to those of the fullerene derivative [6,6]-phenyl-C71 -butyric acid methyl ester (PC71 BM). PNT1 is employed as the electron acceptor in solution-processed bulk heterojunction organic solar cells, demonstrating the potential of this new type of materials for optoelectronic applications.


Assuntos
Fontes de Energia Elétrica , Luz , Polímeros/química , Soluções/química , Imidas/química , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Naftalenos/química , Polímeros/síntese química , Energia Solar , Espectrofotometria , Temperatura , Tiofenos/química
3.
Chemistry ; 22(21): 7179-83, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27080951

RESUMO

A modified one-pot Sonogashira cross-coupling reaction based on a copper-free methodology has been applied for the synthesis of conjugated microporous poly(aryleneethynylene) networks (CMPs) from readily available iodoarylenes and 1,3,5-triethynylbenzene. The polymerization reactions were carried out by using equimolar amounts of halogen and terminal alkyne moieties with extremely small loadings of palladium catalyst as low as 0.65 mol %. For the first time, CMPs with rigorously controlled structures were obtained without any indications of side reactions, as proven by FTIR and solid-state NMR spectroscopy, while showing Brunauer-Emmett-Teller (BET) surface areas higher than any poly(aryleneethynylene) network reported before, reaching up to 2552 m(2) g(-1) .

4.
Chemistry ; 21(26): 9306-11, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26031405

RESUMO

Dithienothiophene (DTT) based conjugated microporous polymers (CMPs) were synthesized by bulk and electrochemical oxidative polymerizations. Spectroelectrochemical measurements showed that DTT-CMP can be reversibly oxidized and reduced, accompanied by a significant change of the absorption properties making the material interesting for electrochromic devices. Reversible doping and dedoping of the bulk polymer network was also observed using iodine and ammonia, respectively. Nitrogen gas sorption measurements of the neutral, doped, and dedoped polymer networks indicated the presence of iodide species within the pores, and the conductivity of the networks is highly increased upon doping with iodine. The introduction of the strong electron donor DTT into a conjugated porous network, and the ability for redox switching, make DTT-CMPs interesting materials for organo(opto)electronic devices and sensors.

5.
Chemistry ; 20(31): 9543-8, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24962986

RESUMO

Conjugated microporous polymer networks have been prepared from the strong electron donor tetrathiafulvalene (TTF) and 1,3,5-triethynylbenzene (TEB) by using the Sonogashira-Hagihara cross-coupling reaction. Optimization of reaction conditions yields polymers with surface areas of up to 434 m(2) g(-1) . The strong electron-donating properties of the network can be proven by iodine exposure. Structural and electronic changes due to formation of the charge-transfer salt from TTFs in the porous network and iodine within the pores are investigated.

6.
Macromol Rapid Commun ; 34(12): 1008-13, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23649734

RESUMO

Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine-bridged heptazine moieties and showed interesting performance as a metal-free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine-based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination.


Assuntos
Compostos Heterocíclicos com 3 Anéis/química , Hidrogênio/química , Polímeros/síntese química , Triazinas/química , Catálise/efeitos da radiação , Estrutura Molecular , Nitrilas/química , Processos Fotoquímicos , Polímeros/química , Porosidade , Temperatura
7.
J Mater Chem A Mater ; 10(40): 21279-21290, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325268

RESUMO

Sustainable photonics applications of solid-state triplet-triplet annihilation photon upconversion (TTA-UC) are limited by a small UC spectral window, low UC efficiency in air, and non-recyclability of polymeric materials used. In a step to overcome these issues, we have developed new recyclable TTA-UC bioplastics by encapsulating TTA-UC chromophores liquid inside the semicrystalline gelatin films showing broad-spectrum upconversion (red/far-red to blue) with high UC efficiency in air. For this, we synthesized a new anionic annihilator, sodium-TIPS-anthracene-2-sulfonate (TIPS-AnS), that combined with red/far-red sensitizers (PdTPBP/Os(m-peptpy)2(TFSI)2), a liquid surfactant Triton X-100 reduced (TXr) and protein gelatin (G) formed red/far-red to blue TTA-UC bioplastic films just by air drying of their aqueous solutions. The G-TXr-TIPS-AnS-PdTPBP film showed record red to blue (633 to 478 nm) TTA-UC quantum yield of 8.5% in air. The high UC quantum yield has been obtained due to the fluidity of dispersed TXr containing chromophores and oxygen blockage by gelatin fibers that allowed efficient diffusion of triplet excited chromophores. Further, the G-TXr-TIPS-AnS-Os(m-peptpy)2(TFSI)2 bioplastic film displayed far-red to blue (700-730 nm to 478 nm) TTA-UC, demonstrating broad-spectrum photon harvesting. Finally, we demonstrated the recycling of G-TXr-TIPS-AnS-PdTPBP bioplastics by developing a downstream approach that gives new directions for designing future recyclable photonics bioplastic materials.

8.
J Phys Chem B ; 125(23): 6255-6263, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081465

RESUMO

In the strive to develop triplet-triplet annihilation photon upconversion (TTA-UC) to become applicable in a viable technology, there is a need to develop upconversion systems that can function well in solid states. One method to achieve efficient solid-state TTA-UC systems is to replace the intermolecular energy-transfer steps with the corresponding intramolecular transfers, thereby minimizing loss channels involved in chromophore diffusion. Herein, we present a study of photon upconversion by TTA internally within a polymeric annihilator network (iTTA). By the design of the annihilator polymer and the choice of experiment conditions, we isolate upconversion emission governed by iTTA within the annihilator particles and eliminate possible external TTA between separate annihilator particles (xTTA). This approach leads to mechanistic insights into the process of iTTA and makes it possible to explore the upconversion kinetics and performance of a polymeric annihilator. In comparison to a monomeric upconversion system that only functions using xTTA, we show that upconversion in a polymeric annihilator is efficient also at extremely low annihilator concentrations and that the overall kinetics is significantly faster. The presented results show that intramolecular photon upconversion is a versatile concept for the development of highly efficient solid-state photon upconversion materials.


Assuntos
Antracenos , Polímeros , Difusão , Transferência de Energia , Fótons
9.
Food Chem ; 311: 125890, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31757493

RESUMO

The recovery of α-tocopherol and ß-sitosterol from the deodorizer distillate of sunflower oil using solid phase extraction is reported. Performance of the silicon-rich and inexpensive zeolite, ZSM-5, and its modified versions were compared as adsorbents. Modifications of the zeolite frame were performed under both acidic and basic conditions to desilicate and dealuminate the parent ZSM-5. Base treatment resulted in hierarchical porosity and increased mesoporosity in the structure, which made the desilicated material as the best adsorbent of the study. Optimization of the solid phase extraction conditions was also studied and high recoveries of α-tocopherol and ß-sitosterol, up to 99.20% and 97.32%, respectively, were achieved. The preparation and characterisation of the reported sorbents, as high-performance adsorbents, were not only proved to be economically promising, due to recycling of nutritious products, but also improves the ecological credentials of the process through reduction in waste.


Assuntos
Sitosteroides/isolamento & purificação , Óleo de Girassol/química , Zeolitas/química , alfa-Tocoferol/isolamento & purificação , Adsorção , Cromatografia Líquida de Alta Pressão , Porosidade , Sitosteroides/análise , Extração em Fase Sólida , alfa-Tocoferol/análise
10.
J Phys Chem B ; 119(32): 10348-58, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26132296

RESUMO

The paper addresses the effect of gold nanoparticle (Au-NP) deposition on the thermoresponsive volume phase transition of the weak polyelectrolyte poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. PDMAEMA brushes were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP). The PDMAEMA/Au-NP composite brushes were fabricated by immersing the brush modified wafer in the Au-NP suspension. Atomic force microscopy (AFM), ellipsometry, and scanning electron microscopy (SEM) have been employed to characterize the neat PDMAEMA brushes and PDMAEMA/Au-NP composite brushes. All neat PDMAEMA brushes swelled below the volume phase transition temperature and collapsed with increasing temperature over a broad temperature range independent of the initial brush thickness. Water uptake of the brushes is also independent of initial brush thickness. The adsorption of the charged Au-NPs significantly affects the degree of swelling and the thermoresponsive properties of the brushes. PDMAEMA/Au-NP composite brushes do not exhibit any noticeable phase transition at the experimental temperature range irrespective of the initial brush thickness. The reason for this behavior is attributed to a combination of the following: the decreased conformational entropy of the Au-NP adsorbed polymer chains, the increased hydrophilicity of the system due to the charged Au-NPs, and the ≈13 nm diameter Au-NPs causing steric hindrance. We have also shown that the AFM full-indentation method can be successfully applied to determine the polymer brush thicknesses.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Metacrilatos/química , Nylons/química , Temperatura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Transição de Fase , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA