Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723627

RESUMO

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Relógios Circadianos , Ritmo Circadiano , Células Endoteliais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/terapia , Melanoma/patologia , Microambiente Tumoral/imunologia
2.
Cell ; 186(7): 1448-1464.e20, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001504

RESUMO

Neutrophils accumulate in solid tumors, and their abundance correlates with poor prognosis. Neutrophils are not homogeneous, however, and could play different roles in cancer therapy. Here, we investigate the role of neutrophils in immunotherapy, leading to tumor control. We show that successful therapies acutely expanded tumor neutrophil numbers. This expansion could be attributed to a Sellhi state rather than to other neutrophils that accelerate tumor progression. Therapy-elicited neutrophils acquired an interferon gene signature, also seen in human patients, and appeared essential for successful therapy, as loss of the interferon-responsive transcription factor IRF1 in neutrophils led to failure of immunotherapy. The neutrophil response depended on key components of anti-tumor immunity, including BATF3-dependent DCs, IL-12, and IFNγ. In addition, we found that a therapy-elicited systemic neutrophil response positively correlated with disease outcome in lung cancer patients. Thus, we establish a crucial role of a neutrophil state in mediating effective cancer therapy.


Assuntos
Neoplasias Pulmonares , Neutrófilos , Humanos , Neoplasias Pulmonares/genética , Transdução de Sinais/genética , Imunoterapia , Interferons
3.
Nature ; 614(7946): 136-143, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470303

RESUMO

The process of cancer immunosurveillance is a mechanism of tumour suppression that can protect the host from cancer development throughout its lifetime1,2. However, it is unknown whether the effectiveness of cancer immunosurveillance fluctuates over a single day. Here we demonstrate that the initial time of day of tumour engraftment dictates the ensuing tumour size across mouse cancer models. Using immunodeficient mice as well as mice lacking lineage-specific circadian functions, we show that dendritic cells (DCs) and CD8+ T cells exert circadian anti-tumour functions that control melanoma volume. Specifically, we find that rhythmic trafficking of DCs to the tumour draining lymph node governs a circadian response of tumour-antigen-specific CD8+ T cells that is dependent on the circadian expression of the co-stimulatory molecule CD80. As a consequence, cancer immunotherapy is more effective when synchronized with DC functions, shows circadian outcomes in mice and suggests similar effects in humans. These data demonstrate that the circadian rhythms of anti-tumour immune components are not only critical for controlling tumour size but can also be of therapeutic relevance.


Assuntos
Linfócitos T CD8-Positivos , Ritmo Circadiano , Células Dendríticas , Melanoma , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia , Camundongos Endogâmicos C57BL , Antígeno B7-1 , Antígenos de Neoplasias/imunologia , Linfonodos , Ritmo Circadiano/imunologia
4.
Proc Natl Acad Sci U S A ; 117(1): 541-551, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31889004

RESUMO

Cancer immunotherapies are increasingly combined with targeted therapies to improve therapeutic outcomes. We show that combination of agonistic anti-CD40 with antiangiogenic antibodies targeting 2 proangiogenic factors, vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (Ang2/ANGPT2), induces pleiotropic immune mechanisms that facilitate tumor rejection in several tumor models. On the one hand, VEGFA/Ang2 blockade induced regression of the tumor microvasculature while decreasing the proportion of nonperfused vessels and reducing leakiness of the remaining vessels. On the other hand, both anti-VEGFA/Ang2 and anti-CD40 independently promoted proinflammatory macrophage skewing and increased dendritic cell activation in the tumor microenvironment, which were further amplified upon combination of the 2 treatments. Finally, combined therapy provoked brisk infiltration and intratumoral redistribution of cytotoxic CD8+ T cells in the tumors, which was mainly driven by Ang2 blockade. Overall, these nonredundant synergistic mechanisms endowed T cells with improved effector functions that were conducive to more efficient tumor control, underscoring the therapeutic potential of antiangiogenic immunotherapy in cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígenos CD40/agonistas , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígenos CD40/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Mammary Gland Biol Neoplasia ; 24(1): 39-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30209717

RESUMO

Genetically engineered mouse models have become an indispensable tool for breast cancer research. Combination of multiple site-specific recombination systems such as Cre/loxP and Flippase (Flp)/Frt allows for engineering of sophisticated, multi-layered conditional mouse models. Here, we report the generation and characterization of a novel transgenic mouse line expressing a mouse codon-optimized Flp under the control of the mouse mammary tumor virus (MMTV) promoter. These mice show robust Flp-mediated recombination in luminal mammary gland and breast cancer cells but no Flp activity in non-mammary tissues, with the exception of limited activity in salivary glands. These mice provide a unique tool for studying mammary gland biology and carcinogenesis in mice.


Assuntos
Carcinogênese/genética , DNA Nucleotidiltransferases/genética , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Vírus do Tumor Mamário do Camundongo/genética , Animais , Carcinogênese/patologia , Progressão da Doença , Células Epiteliais/patologia , Feminino , Genes Reporter/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Proteínas Luminescentes/genética , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Microinjeções , Regiões Promotoras Genéticas/genética , Recombinação Genética , Glândulas Salivares/patologia , Microambiente Tumoral/genética , Proteína Vermelha Fluorescente
6.
Ther Umsch ; 76(4): 187-194, 2019 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-31498037

RESUMO

Immunotherapies - Overview, mode of action and clinical implications Abstract. The introduction of immunotherapies has led to major advances in the treatment of cancer patients. The mainstays of immunotherapies in clinical routine are immune checkpoint inhibitors. Immune checkpoints like CTLA-4 or the PD-1 / PD-L1 axis are important contributors to the immune homeostasis by preventing overshooting immune responses against pathogens and thus preventing collateral damage to normal tissue, or by preventing autoimmunity. However, immune checkpoints can impede the development of an efficient anti-tumor immune response. Thus, therapeutic monoclonal antibodies against CTLA-4 and PD-1 or PD-L1 displayed remarkable clinical activity such as complete sustained clinical remission even in patients bearing multiple metastases. Malignant melanoma, non-small cell lung cancer or Hodgkin's lymphoma are examples of cancer entities with especially well clinical responses to immune checkpoint inhibitors. This fast-developing field is rapidly expanding the indications for immune checkpoint inhibitors and combinations with other therapeutic strategies like vessel-modulating agents or classical chemotherapy are in preclinical and clinical testing. In this article, the mechanistic principles of immune checkpoint inhibition and their clinical applications are illustrated.


Assuntos
Imunoterapia , Neoplasias/terapia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Humanos , Imunoterapia/métodos
7.
Angiogenesis ; 19(3): 339-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27038485

RESUMO

UNLABELLED: Viral VEGF-E (ovVEGF-E), a homolog of VEGF-A, was discovered in the genome of Orf virus. Together with VEGF-A, B, C, D, placental growth factor (PlGF) and snake venom VEGF (svVEGF), ovVEGF-E is a member of the VEGF family of potent angiogenesis factors with a bioactivity similar to VEGF-A: it induces proliferation, migration and sprouting of cultured vascular endothelial cells and proliferative lesions in the skin of sheep, goat and man that are characterized by massive capillary proliferation and dilation. These biological functions are mediated exclusively via its interaction with VEGF receptor-2 (VEGFR-2). Here, we have generated transgenic mice specifically expressing ovVEGF-E in ß-cells of the endocrine pancreas (Rip1VEGF-E; RVE). RVE mice show an increase in number and size of the islets of Langerhans and a distorted organization of insulin and glucagon-expressing cells. Islet endothelial cells of RVE mice hyper-proliferate and form increased numbers of functional blood vessels. In addition, the formation of disorganized lymphatic vessels and increased immune cell infiltration is observed. Upon crossing RVE single-transgenic mice with Rip1Tag2 (RT2) transgenic mice, a well-studied model of pancreatic ß-cell carcinogenesis, double-transgenic mice (RT2;RVE) display hyper-proliferation of endothelial cells resulting in the formation of hemangioma-like lesions. In addition, RT2;RVE mice exhibit activated lymphangiogenesis at the tumor periphery and increased neutrophil and macrophage tumor infiltration and micro-metastasis to lymph nodes and lungs. These phenotypes markedly differ from the phenotypes observed with the transgenic expression of the other VEGF family members in ß-cells of normal mice and of RT2 mice.


Assuntos
Hemangioma/etiologia , Neoplasias Pancreáticas/etiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Virais/metabolismo , Animais , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Cabras , Hemangioma/metabolismo , Hemangioma/patologia , Humanos , Células Secretoras de Insulina/metabolismo , Linfangiogênese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ovinos , Transdução de Sinais , Proteínas Virais/genética
8.
Angiogenesis ; 18(3): 327-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26021306

RESUMO

Tumor growth depends on the formation of new blood vessels (tumor angiogenesis) either from preexisting vessels or by the recruitment of bone marrow-derived cells. Despite encouraging results obtained with preclinical cancer models, the therapeutic targeting of tumor angiogenesis has thus far failed to deliver an enduring clinical response in cancer patients. One major obstacle for improving anti-angiogenic therapy is the lack of validated biomarkers, which allow patient stratification for suitable treatment and a rapid assessment of therapy response. Toward these goals, we have employed several mouse models of tumor angiogenesis to identify cell populations circulating in their blood that correlated with the extent of tumor angiogenesis and therapy response. Flow cytometry analyses of different combinations of cell surface markers that define subsets of bone marrow-derived cells were performed on peripheral blood mononuclear cells from tumor-bearing and healthy mice. We identified one cell population, CD45(dim)VEGFR1(-)CD31(low), that was increased in levels during active tumor angiogenesis in a variety of transgenic and syngeneic transplantation mouse models of cancer. Treatment with various anti-angiogenic drugs did not affect CD45(dim)VEGFR1(-)CD31(low) cells in healthy mice, whereas in tumor-bearing mice, a consistent reduction in their levels was observed. Gene expression profiling of CD45(dim)VEGFR1(-)CD31(low) cells characterized these cells as an immature B cell population. These immature B cells were then directly validated as surrogate marker for tumor angiogenesis and of pharmacologic responses to anti-angiogenic therapies in various mouse models of cancer.


Assuntos
Linfócitos B/imunologia , Biomarcadores/metabolismo , Neoplasias/patologia , Neovascularização Patológica , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Membrana Celular/metabolismo , Técnicas de Cocultura , Biologia Computacional , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Antígenos Comuns de Leucócito/metabolismo , Leucócitos Mononucleares/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Head Neck Pathol ; 17(4): 969-975, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37930471

RESUMO

Immune checkpoint inhibitors have improved the outcome of patients diagnosed with inoperable recurrent or metastatic head and neck squamous cell carcinoma. However, as only a subset of head and neck cancer patients benefit from this treatment, biomarkers predicting treatment response help guide physicians in their clinical decision-making. PD-L1 expression assessed by immunohistochemistry is the single most clinically relevant biomarker predicting response to PD-1-blocking antibodies. Here, we discuss in which clinical context assessment of PD-L1 expression is instrumental for the choice of therapy, how pathologists score it, and how it affects the approval of anti-PD-1 antibodies. Furthermore, we discuss the heterogeneity of PD-L1 expression and review technical aspects of determining this prominent biomarker-knowledge that might influence clinical decision-making.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Antígeno B7-H1/metabolismo , Imuno-Histoquímica , Biomarcadores
11.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208130

RESUMO

BACKGROUND: Although immune checkpoint inhibitors have been a breakthrough in clinical oncology, these therapies fail to produce durable responses in a significant fraction of patients. This lack of long-term efficacy may be due to a poor pre-existing network linking innate and adaptive immunity. Here, we present an antisense oligonucleotide (ASO)-based strategy that dually targets toll-like receptor 9 (TLR9) and programmed cell death ligand 1 (PD-L1), aiming to overcome resistance to anti-PD-L1 monoclonal therapy. METHODS: We designed a high-affinity immunomodulatory IM-TLR9:PD-L1-ASO antisense oligonucleotide (hereafter, IM-T9P1-ASO) targeting mouse PD-L1 messenger RNA and activating TLR9. Then, we performed in vitro and in vivo studies to validate the IM-T9P1-ASO activity, efficacy, and biological effects in tumors and draining lymph nodes. We also performed intravital imaging to study IM-T9P1-ASO pharmacokinetics in the tumor. RESULTS: IM-T9P1-ASO therapy, unlike PD-L1 antibody therapy, results in durable antitumor responses in multiple mouse cancer models. Mechanistically, IM-T9P1-ASO activates a state of tumor-associated dendritic cells (DCs), referred to here as DC3s, which have potent antitumor potential but express the PD-L1 checkpoint. IM-T9P1-ASO has two roles: it triggers the expansion of DC3s by engaging with TLR9 and downregulates PD-L1, thereby unleashing the antitumor functions of DC3s. This dual action leads to tumor rejection by T cells. The antitumor efficacy of IM-T9P1-ASO depends on the antitumor cytokine interleukin-12 (IL-12), produced by DC3s, and Batf3, a transcription factor required for DC development. CONCLUSIONS: By simultaneously targeting TLR9 and PD-L1, IM-T9P1-ASO amplifies antitumor responses via DC activation, leading to sustained therapeutic efficacy in mice. By highlighting differences and similarities between mouse and human DCs, this study could serve to develop similar therapeutic strategies for patients with cancer.


Assuntos
Neoplasias , Receptor Toll-Like 9 , Humanos , Camundongos , Animais , Receptor Toll-Like 9/metabolismo , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Oligonucleotídeos Antissenso , Células Dendríticas
12.
Science ; 381(6657): 515-524, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535729

RESUMO

Tumor microenvironments (TMEs) influence cancer progression but are complex and often differ between patients. Considering that microenvironment variations may reveal rules governing intratumoral cellular programs and disease outcome, we focused on tumor-to-tumor variation to examine 52 head and neck squamous cell carcinomas. We found that macrophage polarity-defined by CXCL9 and SPP1 (CS) expression but not by conventional M1 and M2 markers-had a noticeably strong prognostic association. CS macrophage polarity also identified a highly coordinated network of either pro- or antitumor variables, which involved each tumor-associated cell type and was spatially organized. We extended these findings to other cancer indications. Overall, these results suggest that, despite their complexity, TMEs coordinate coherent responses that control human cancers and for which CS macrophage polarity is a relevant yet simple variable.


Assuntos
Polaridade Celular , Quimiocina CXCL9 , Neoplasias de Cabeça e Pescoço , Macrófagos , Osteopontina , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Quimiocina CXCL9/análise , Quimiocina CXCL9/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Macrófagos/imunologia , Osteopontina/análise , Osteopontina/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Polaridade Celular/imunologia
13.
Cancer Rep (Hoboken) ; 5(3): e1491, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34231337

RESUMO

BACKGROUND: Secretory carcinoma is a more recently described subtype of salivary gland carcinoma that may pose diagnostic challenges and frequently harbors NTRK fusions that may successfully be targeted by TRK inhibitors in advanced disease. CASE: We present the case of a female patient with secretory carcinoma arising in the base of tongue with persistent disease after debulking surgery and definitive chemoradiation. As an alternative to salvage surgery, which would have resulted in significant impairment of swallowing and speech function, a targeted therapy with the TRK-inhibitor larotrectinib against an identified ETV6-NTRK3 fusion product was initiated. Larotrectinib treatment has been well tolerated, resulted in durable complete response and the patient maintains good swallowing and speech function. CONCLUSION: The presented case underscores the importance of the accurate diagnosis of secretory carcinoma. It further highlights the impact of molecular testing as targeted therapies may play an important role in the management of advanced salivary gland cancers.


Assuntos
Neoplasias das Glândulas Salivares , Glândulas Salivares Menores , Neoplasias da Mama , Carcinoma , Feminino , Humanos , Imuno-Histoquímica , Proteínas de Fusão Oncogênica , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/terapia , Glândulas Salivares Menores/patologia
14.
Cancer Immunol Res ; 10(1): 40-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34795032

RESUMO

Macrophages often abound within tumors, express colony-stimulating factor 1 receptor (CSF1R), and are linked to adverse patient survival. Drugs blocking CSF1R signaling have been used to suppress tumor-promoting macrophage responses; however, their mechanisms of action remain incompletely understood. Here, we assessed the lung tumor immune microenvironment in mice treated with BLZ945, a prototypical small-molecule CSF1R inhibitor, using single-cell RNA sequencing and mechanistic validation approaches. We showed that tumor control was not caused by CSF1R+ cell depletion; instead, CSF1R targeting reshaped the CSF1R+ cell landscape, which unlocked cross-talk between antitumoral CSF1R- cells. These cells included IFNγ-producing natural killer and T cells, and an IL12-producing dendritic cell subset, denoted as DC3, which were all necessary for CSF1R inhibitor-mediated lung tumor control. These data indicate that CSF1R targeting can activate a cardinal cross-talk between cells that are not macrophages and that are essential to mediate the effects of T cell-targeted immunotherapies and promote antitumor immunity.See related Spotlight by Burrello and de Visser, p. 4.


Assuntos
Células Dendríticas/imunologia , Imunoterapia/métodos , Interferon gama/metabolismo , Interleucina-12/metabolismo , Neoplasias Pulmonares/terapia , Animais , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Feminino , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Picolínicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33601412

RESUMO

Dendritic cells (DCs) contribute a small fraction of the tumor microenvironment but are emerging as an essential antitumor component based on their ability to foster T cell immunity and immunotherapy responses. Here, we discuss our expanding view of DC heterogeneity in human tumors, as revealed with meta-analysis of single-cell transcriptome profiling studies. We further examine tumor-infiltrating DC states that are conserved across patients, cancer types, and species and consider the fundamental and clinical relevance of these findings. Finally, we provide an outlook on research opportunities to further explore mechanisms governing tumor-infiltrating DC behavior and functions.


Assuntos
Células Dendríticas/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Células Dendríticas/patologia , Perfilação da Expressão Gênica , Humanos , Neoplasias/classificação , Neoplasias/patologia
16.
Dev Cell ; 56(23): 3203-3221.e11, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34847378

RESUMO

Epithelial-mesenchymal transition (EMT) is a transient, reversible process of cell de-differentiation where cancer cells transit between various stages of an EMT continuum, including epithelial, partial EMT, and mesenchymal cell states. We have employed Tamoxifen-inducible dual recombinase lineage tracing systems combined with live imaging and 5-cell RNA sequencing to track cancer cells undergoing partial or full EMT in the MMTV-PyMT mouse model of metastatic breast cancer. In primary tumors, cancer cells infrequently undergo EMT and mostly transition between epithelial and partial EMT states but rarely reach full EMT. Cells undergoing partial EMT contribute to lung metastasis and chemoresistance, whereas full EMT cells mostly retain a mesenchymal phenotype and fail to colonize the lungs. However, full EMT cancer cells are enriched in recurrent tumors upon chemotherapy. Hence, cancer cells in various stages of the EMT continuum differentially contribute to hallmarks of breast cancer malignancy, such as tumor invasion, metastasis, and chemoresistance.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Análise de Sequência de RNA , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Immunol ; 6(61)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215680

RESUMO

Immunotherapy is revolutionizing cancer treatment but is often restricted by toxicities. What distinguishes adverse events from concomitant antitumor reactions is poorly understood. Here, using anti-CD40 treatment in mice as a model of TH1-promoting immunotherapy, we showed that liver macrophages promoted local immune-related adverse events. Mechanistically, tissue-resident Kupffer cells mediated liver toxicity by sensing lymphocyte-derived IFN-γ and subsequently producing IL-12. Conversely, dendritic cells were dispensable for toxicity but drove tumor control. IL-12 and IFN-γ were not toxic themselves but prompted a neutrophil response that determined the severity of tissue damage. We observed activation of similar inflammatory pathways after anti-PD-1 and anti-CTLA-4 immunotherapies in mice and humans. These findings implicated macrophages and neutrophils as mediators and effectors of aberrant inflammation in TH1-promoting immunotherapy, suggesting distinct mechanisms of toxicity and antitumor immunity.


Assuntos
Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversos , Células de Kupffer/efeitos dos fármacos , Fígado/efeitos dos fármacos , Neoplasias/terapia , Neutrófilos/efeitos dos fármacos , Animais , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Citocinas/imunologia , Humanos , Células de Kupffer/imunologia , Fígado/imunologia , Camundongos Transgênicos , Neoplasias/imunologia , Neutrófilos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia
18.
Oncogenesis ; 7(9): 73, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237500

RESUMO

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates a plethora of downstream signaling pathways essential for cell migration, proliferation and death, processes that are exploited by cancer cells during malignant progression. These well-established tumorigenic activities, together with its high expression and activity in different cancer types, highlight FAK as an attractive target for cancer therapy. We have assessed and characterized the therapeutic potential and the biological effects of BI 853520, a novel small chemical inhibitor of FAK, in several preclinical mouse models of breast cancer. Treatment with BI 853520 elicits a significant reduction in primary tumor growth caused by an anti-proliferative activity by BI 853520. In contrast, BI 853520 exerts effects with varying degrees of robustness on the different stages of the metastatic cascade. Together, the data demonstrate that the repression of FAK activity by the specific FAK inhibitor BI 853520 offers a promising anti-proliferative approach for cancer therapy.

19.
Mol Cancer Ther ; 16(11): 2502-2515, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28729403

RESUMO

Increasing the efficacy of approved systemic treatments in metastasized pancreatic neuroendocrine tumors (PanNET) is an unmet medical need. The antiangiogenic tyrosine kinase inhibitor sunitinib is approved for PanNET treatment. In addition, sunitinib is a lysosomotropic drug and such drugs can induce lysosomal membrane permeabilization as well as autophagy. We investigated sunitinib-induced autophagy as a possible mechanism of PanNET therapy resistance. Sunitinib accumulated in lysosomes and induced autophagy in PanNET cell lines. Adding the autophagy inhibitor chloroquine reduced cell viability in cell lines and in primary cells isolated from PanNET patients. The same treatment combination reduced tumor burden in the Rip1Tag2 transgenic PanNET mouse model. The combination of sunitinib and chloroquine reduced recovery and induced apoptosis in vitro, whereas single treatments did not. Knockdown of key autophagy proteins in combination with sunitinib showed similar effect as chloroquine. Sunitinib also induced lysosomal membrane permeabilization, which further increased in the presence of chloroquine or knockdown of lysosome-associated membrane protein (LAMP2). Both combinations led to cell death. Our data indicate that chloroquine increases sunitinib efficacy in PanNET treatment via autophagy inhibition and lysosomal membrane permeabilization. We suggest that adding chloroquine to sunitinib treatment will increase efficacy of PanNET treatment and that such patients should be included in respective ongoing clinical trials. Mol Cancer Ther; 16(11); 2502-15. ©2017 AACR.


Assuntos
Indóis/administração & dosagem , Proteína 2 de Membrana Associada ao Lisossomo/genética , Neovascularização Patológica/tratamento farmacológico , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Pirróis/administração & dosagem , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Técnicas de Silenciamento de Genes , Humanos , Indóis/química , Lisossomos/química , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Pirróis/química , Sunitinibe
20.
Methods Mol Biol ; 1464: 151-161, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27858364

RESUMO

The Rip1Tag2 transgenic mouse model of ß-cell carcinogenesis has been instrumental in studying various aspects of tumor angiogenesis and in investigating the response to anti-angiogenic therapeutics. Thereby, the in-depth assessment of blood and lymphatic vessel phenotypes and functionality represents key experimental analyses. In this chapter, we describe basic protocols to assess tumor blood vessel morphology (pericyte coverage), functionality (perfusion, leakiness, and hypoxia), lymphatic tumor coverage, and tumor cell proliferation and apoptosis based on immunofluorescence microscopy analysis.


Assuntos
Carcinoma Neuroendócrino/genética , Insulinoma/genética , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/genética , Animais , Antígenos Virais de Tumores/genética , Apoptose , Carcinoma Neuroendócrino/irrigação sanguínea , Carcinoma Neuroendócrino/patologia , Proliferação de Células , Insulina/genética , Insulinoma/irrigação sanguínea , Insulinoma/patologia , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/genética , Neovascularização Patológica/genética , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA