RESUMO
New results are reported from a measurement of π^{0} electroproduction near threshold using the p(e,e^{'}p)π^{0} reaction. The experiment was designed to determine precisely the energy dependence of s- and p-wave electromagnetic multipoles as a stringent test of the predictions of chiral perturbation theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the Ï_{π}^{*} and θ_{π}^{*} angles in the pπ^{0} center of mass was obtained for invariant energies above threshold from 0.5 up to 15 MeV. The 4-momentum transfer Q^{2} coverage ranges from 0.05 to 0.155 (GeV/c)^{2} in fine steps. A simple phenomenological analysis of our data shows strong disagreement with p-wave predictions from ChPT for Q^{2}>0.07 (GeV/c)^{2}, while the s-wave predictions are in reasonable agreement.
RESUMO
We present new data for the polarization observables of the final state proton in the (1)H(γ,p)π(0) reaction. These data can be used to test predictions based on hadron helicity conservation and perturbative QCD. These data have both small statistical and systematic uncertainties and were obtained with beam energies between 1.8 and 5.6 GeV and for π(0) scattering angles larger than 75° in the center-of-mass frame. The data extend the polarization measurements database for neutral pion photoproduction up to E(γ)=5.6 GeV. The results show a nonzero induced polarization above the resonance region. The polarization transfer components vary rapidly with the photon energy and π(0) scattering angle in the center-of-mass frame. This indicates that hadron helicity conservation does not hold and that the perturbative QCD limit is still not reached in the energy regime of this experiment.
RESUMO
The parity-violating (PV) asymmetry of inclusive π- production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasifree photoproduction off the neutron via the Δ0 resonance. In the context of heavy-baryon chiral perturbation theory, this asymmetry is related to a low-energy constant d(Δ)- that characterizes the parity-violating γNΔ coupling. Zhu et al. calculated d(Δ)- in a model benchmarked by the large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from A(γ)-=-5.2 to +5.2 ppm. The measurement performed in this work leads to A(γ)-=-0.36±1.06±0.37±0.03 ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to V(ud)/V(us). The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the N-Δ axial transition form factors using PV electron scattering.
RESUMO
Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, G(E)/G(M), obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic H(e[over â],e(')p[over â]) reaction for three different beam energies at a Q(2)=2.5 GeV(2), spanning a wide range of the kinematic parameter ε. The ratio R, which equals µ(p)G(E)/G(M) in the Born approximation, is found to be independent of ε at the 1.5% level. The ε dependence of the longitudinal polarization transfer component P(â) shows an enhancement of (2.3±0.6)% relative to the Born approximation at large ε.
RESUMO
We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasielastic scattering on the deuteron, at backward angles (lab scattering angle of 108°) for Q² = 0.22 GeV²/c² and 0.63 GeV²/c² at beam energies of 362 and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single-photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (πN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasistatic deuterium approximation, and is also in agreement with theory.
RESUMO
Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which G(E)(p) is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime.
RESUMO
We have measured parity-violating asymmetries in elastic electron-proton and quasielastic electron-deuteron scattering at Q2=0.22 and 0.63 GeV2. They are sensitive to strange quark contributions to currents in the nucleon and the nucleon axial-vector current. The results indicate strange quark contributions of approximately < 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial-vector current at these four-momentum transfers.
RESUMO
Tensor polarization observables ( t(20), t(21), and t(22)) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)(2). The experiment was performed at the Jefferson Laboratory in Hall C using the electron High Momentum Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q2 the deuteron charge form factors G(C) and G(Q). They are in good agreement with relativistic calculations and disagree with perturbative QCD predictions.
RESUMO
We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q2=0.15, 0.25 (GeV/c)2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A(n) provides a direct probe of the imaginary component of the 2gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.
RESUMO
Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s=5-11 and -t=2-7 GeV2 with a statistical accuracy of a few percent. The scaling power for the s dependence of the cross section at fixed center-of-mass angle was found to be 8.0+/-0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.
RESUMO
We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < or =Q2 < or =1.0 GeV2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange-quark contributions to the currents of the proton. The measurements were made at Jefferson Laboratory using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate nonzero, Q2 dependent, strange-quark contributions and provide new information beyond that obtained in previous experiments.
RESUMO
We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions P(LL)-P(TT)/epsilon and P(LT), and the electric and magnetic generalized polarizabilities (GPs) alpha(E)(Q2) and beta(M)(Q2) at momentum transfer Q(2)=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from piN intermediate states.
RESUMO
The ratio of the electric and magnetic form factors of the proton G(E(p))/G(M(p)), which is an image of its charge and magnetization distributions, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic e(-->)p---> e(-->)p reaction. The new data presented span the range 3.5< Q(2)< 5.6 GeV(2) and are well described by a linear Q(2) fit. Also, the ratio sqrt[Q(2)] F(2(p))/F(1(p)) reaches a constant value above Q(2) = 2 GeV(2).
RESUMO
We present measurements of the recoil proton polarization for the d(gamma-->,p-->)n reaction at straight theta(c.m.) = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization p(y) vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(gamma,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime.
RESUMO
We measured the cross section and response functions for the quasielastic 16O(e,e'p) reaction for missing energies 25< or =E(m)< or =120 MeV at missing momenta P(m)< or =340 MeV/c. For 25