Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(6): 2377-2388, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062539

RESUMO

Around 50% of patients undergoing frontal lobe surgery for focal drug-resistant epilepsy become seizure free post-operatively; however, only about 30% of patients remain seizure free in the long-term. Early seizure recurrence is likely to be caused by partial resection of the epileptogenic lesion, whilst delayed seizure recurrence can occur even if the epileptogenic lesion has been completely excised. This suggests a coexistent epileptogenic network facilitating ictogenesis in close or distant dormant epileptic foci. As thalamic and striatal dysregulation can support epileptogenesis and disconnection of cortico-thalamostriatal pathways through hemispherotomy or neuromodulation can improve seizure outcome regardless of focality, we hypothesize that projections from the striatum and the thalamus to the cortex may contribute to this common epileptogenic network. To this end, we retrospectively reviewed a series of 47 consecutive individuals who underwent surgery for drug-resistant frontal lobe epilepsy. We performed voxel-based and tractography disconnectome analyses to investigate shared patterns of disconnection associated with long-term seizure freedom. Seizure freedom after 3 and 5 years was independently associated with disconnection of the anterior thalamic radiation and anterior cortico-striatal projections. This was also confirmed in a subgroup of 29 patients with complete resections, suggesting these pathways may play a critical role in supporting the development of novel epileptic networks. Our study indicates that network dysfunction in frontal lobe epilepsy may extend beyond the resection and putative epileptogenic zone. This may be critical in the pathogenesis of delayed seizure recurrence as thalamic and striatal networks may promote epileptogenesis and disconnection may underpin long-term seizure freedom.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Frontal , Humanos , Epilepsia do Lobo Frontal/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Eletroencefalografia , Convulsões/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia
2.
Epilepsia ; 63(5): 1025-1040, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184291

RESUMO

Individuals with temporal lobe epilepsy (TLE) may have significant language deficits. Language capabilities may further decline following temporal lobe resections. The language network, comprising dispersed gray matter regions interconnected with white matter fibers, may be atypical in individuals with TLE. This review explores the structural changes to the language network and the functional reorganization of language abilities in TLE. We discuss the importance of detailed reporting of patient's characteristics, such as, left- and right-sided focal epilepsies as well as lesional and nonlesional pathological subtypes. These factors can affect the healthy functioning of gray and/or white matter. Dysfunction of white matter and displacement of gray matter function could concurrently impact their ability, in turn, producing an interactive effect on typical language organization and function. Surgical intervention can result in impairment of function if the resection includes parts of this structure-function network that are critical to language. In addition, impairment may occur if language function has been reorganized and is included in a resection. Conversely, resection of an epileptogenic zone may be associated with recovery of cortical function and thus improvement in language function. We explore the abnormality of functional regions in a clinically applicable framework and highlight the differences in the underlying language network. Avoidance of language decline following surgical intervention may depend on tailored resections to avoid critical areas of gray matter and their white matter connections. Further work is required to elucidate the plasticity of the language network in TLE and to identify sub-types of language representation, both of which will be useful in planning surgery to spare language function.


Assuntos
Epilepsia do Lobo Temporal , Substância Branca , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Humanos , Idioma , Imageamento por Ressonância Magnética , Lobo Temporal , Substância Branca/patologia
3.
Epilepsia ; 63(10): 2597-2622, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35848050

RESUMO

OBJECTIVE: Temporal lobe epilepsy (TLE) affects brain networks and is associated with impairment of episodic memory. Temporal and extratemporal reorganization of memory functions is described in functional magnetic resonance imaging (fMRI) studies. Functional reorganizations have been shown at the local activation level, but network-level alterations have been underinvestigated. We aim to investigate the functional anatomy of memory networks using memory fMRI and determine how this relates to memory function in TLE. METHODS: Ninety patients with unilateral TLE (43 left) and 29 controls performed a memory-encoding fMRI paradigm of faces and words with subsequent out-of-scanner recognition test. Subsequent memory event-related contrasts of words and faces remembered were generated. Psychophysiological interaction analysis investigated task-associated changes in functional connectivity seeding from the mesial temporal lobes (MTLs). Correlations between changes in functional connectivity and clinical memory scores, epilepsy duration, age at epilepsy onset, and seizure frequency were investigated, and between connectivity supportive of better memory and disease burden. Connectivity differences between controls and TLE, and between TLE with and without hippocampal sclerosis, were explored using these confounds as regressors of no interest. RESULTS: Compared to controls, TLE patients showed widespread decreased connectivity between bilateral MTLs and frontal lobes, and increased local connectivity between the anterior MTLs bilaterally. Increased intrinsic connectivity within the bilateral MTLs correlated with better out-of-scanner memory performance in both left and right TLE. Longer epilepsy duration and higher seizure frequency were associated with decreased connectivity between bilateral MTLs and left/right orbitofrontal cortex (OFC) and insula, connections supportive of memory functions. TLE due to hippocampal sclerosis was associated with greater connectivity disruption within the MTL and extratemporally. SIGNIFICANCE: Connectivity analyses showed that TLE is associated with temporal and extratemporal memory network reorganization. Increased bilateral functional connectivity within the MTL and connectivity to OFC and insula are efficient, and are disrupted by greater disease burden.


Assuntos
Epilepsia do Lobo Temporal , Memória Episódica , Epilepsia do Lobo Temporal/patologia , Lateralidade Funcional/fisiologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose/complicações , Convulsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA