Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(7): 7871-7887, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896626

RESUMO

This study aimed (1) to provide estimates of total mean retention times of milk replacer (MR), concentrates, and roughage in veal calves fed a mixed diet; (2) to determine the effect of level and type of solid feed (SF) on passage kinetics of MR, concentrates, and roughages in veal calves; and (3) to compare passage kinetics in veal calves using the fecal excretion curves of indigestible markers and a noninvasive 13C tracer breath test approach to determine whether the latter technique can serve as an alternative. At the start of the trial, 48 Holstein-Friesian calves (6 wk of age; 68 ± 7.7 kg of body weight; BW) were assigned to 1 of 4 dietary treatments (for statistical analysis, only 39 calf observations were used). Three treatments contained chopped wheat straw as roughage in the SF mixture in a concentrate:roughage ratio of 90:10 (dry matter basis). The SF level was 20 g/kg of metabolic BW per day (low straw), 30 g/kg of metabolic BW per day (middle straw), or 40 g/kg of metabolic BW per day (high straw). The fourth treatment (high hay) contained long perennial ryegrass hay as roughage in the SF mixture in a concentrate:roughage ratio of 70:30 (dry matter basis, at 40 g/kg of metabolic BW per day). The quantity of MR was fixed for the high straw treatment, whereas the amount of MR for the other treatments during the adaptation period was adjusted based on a pair gain strategy (i.e., exchanging ration components but keeping similar net energy). At the end of the adaptation period, calves ranged from 12 to 15 wk of age with an average BW of 123 ± 8.6 kg. Passage kinetics of concentrates were estimated by measuring 13C enrichment excess of CO2 in breath from a pulsed-dose of [1-13C]octanoate. Passage kinetics of roughage, concentrates, and MR were also estimated using fecal excretion curves obtained after ingestion of chromium-mordanted roughage, Yb2O3, and Co-EDTA, respectively. We conclude that [1-13C]octanoate cannot serve as a measure for oro-duodenal transit of concentrates because of unrealistic estimates. Based on the fecal excretion curves, we concluded that the total mean retention time of MR (i.e., time to peak; the moment that the excretion curve reaches peak concentration) was, on average, 12.4 h, and that the passage kinetics of MR was not affected by the level or type of SF. The mean retention time of concentrates was shorter (21.4 h) than that of both straw (59.1 h) and hay (36.8 h), and was not affected by the level or type of SF. Also, the mean retention time of the slowest compartment (i.e., the rumen) was shorter for concentrates (39.6 h) than that of straw (110.0 h) and hay (59.2 h). Contrary, the passage of roughage was affected by level and type of SF. Long hay increased time to peak by 22.3 h and decreased ruminal mean retention time by 50.8 h relative to chopped straw, indicating that the passage rate of long hay is faster than that of chopped straw. We conclude that the level and type of SF only affects the passage kinetics of roughage and not that of MR and concentrates.


Assuntos
Ração Animal , Fibras na Dieta , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Cinética , Leite , Silagem/análise
2.
J Anim Sci ; 99(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33780532

RESUMO

The effects of birth weight (BiW; low BiW [LBW] vs. high BiW [HBW]) and estimated breeding value (EBV) for protein deposition (low EBV [LBV] vs. high EBV [HBV]) on N retention, N efficiency, and concentrations of metabolites in plasma and urine related to N efficiency in growing pigs were studied. At an age of 14 wk, 10 LBW-LBV (BiW: 1.07 ± 0.09 [SD] kg; EBV: -2.52 ± 3.97 g/d, compared with an average crossbred pig with a protein deposition of 165 g/d), 10 LBW-HBV (BiW: 1.02 ± 0.13 kg; EBV: 10.47 ± 4.26 g/d), 10 HBW-LBV (BiW: 1.80 ± 0.13 kg; EBV: -2.15 ± 2.28 g/d), and 10 HBW-HBV (BiW: 1.80 ± 0.15 kg; EBV: 11.18 ± 3.68 g/d) male growing pigs were allotted to the experiment. The pigs were individually housed in metabolism cages and were subjected to an N balance study in two sequential periods of 5 d, after an 11-d dietary adaptation period. Pigs were assigned to a protein adequate (A) or protein restricted (R, 70% of A) regime in a change-over design. Pigs were fed 2.8 times the energy requirements for maintenance. Nontargeted metabolomics analyses were performed in urine and blood plasma samples. The N retention (in g/d) was higher in the HBW than in the LBW pigs (P < 0.001). The N retention (in g/[kg metabolic body weight (BW0.75) · d]) and N efficiency, however, were not affected by the BiW of the pigs. The N retention (P = 0.04) and N efficiency (P = 0.04) were higher in HBV than in LVB pigs on the A regime but were not affected by EBV in pigs on the R regime. Restricting the dietary protein supply with 30% decreased the N retention (P < 0.001) but increased the N efficiency (P = 0.003). Nontargeted metabolomics showed that a hexose, free amino acids (AA), and lysophosphatidylcholines were the most important metabolites in plasma for the discrimination between HBV and LBV pigs, whereas metabolites of microbial origin contributed to the discrimination between HBV and LBV pigs in urine. This study shows that BiW does not affect N efficiency in the later life of pigs. Nitrogen efficiency and N retention were higher in HBV than in LBV pigs on the A regime but similar in HBV and LBV pigs on the R regime. In precision feeding concepts aiming to further optimize protein and AA efficiency in pigs, the variation in EBV for protein deposition of pigs should be considered as a factor determining N retention, growth performance, and N efficiency.


Assuntos
Ração Animal , Nitrogênio , Ração Animal/análise , Animais , Peso ao Nascer , Dieta , Proteínas Alimentares , Masculino , Suínos
3.
J Anim Sci ; 98(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479590

RESUMO

Exploring factors that might affect nitrogen (N) efficiency in pigs could support the development of precision feeding concepts. Therefore, an experiment was conducted to determine the effects of birth weight (BiW) on N retention, N efficiency, and concentrations of metabolites in plasma and urine related to N efficiency in male pigs of 14 wk of age. BiW of the low BiW (LBW) and high BiW (HBW) pigs was 1.11 ± 0.14 and 1.79 ± 0.12 kg, respectively. Twenty LBW and 20 HBW pigs were individually housed in metabolism cages and were subjected to an N balance study in two sequential periods of 5 d, after an 11-d adaptation period. Pigs were assigned to a protein adequate (A) or protein restricted (R, 70% of A) regime in a change-over design and fed restrictedly 2.8 times the energy requirements for maintenance. Nontargeted metabolomics analyses were performed in urine and blood plasma samples. The N retention in g/d was higher in the HBW than in the LBW pigs (P < 0.001). The N retention in g/(kg BW0.75·d) and N efficiency (= 100% × N retention / N intake), however, were not affected by BiW of the pigs. Moreover, fecal digestibility of N and urinary concentration of N and urea were not affected by BiW of the pigs. The concentration of insulin (P = 0.08) and insulin-like growth factor-1 (IGF-1;P = 0.05) in blood plasma was higher in HBW pigs, whereas the concentration of α-amino N tended to be lower in HBW pigs (P = 0.06). The LBW and HBW pigs could not be discriminated based on the plasma and urinary metabolites retrieved by nontargeted metabolomics. Restricting dietary protein supply decreased N retention (P < 0.001), N efficiency (P = 0.07), fecal N digestibility (P < 0.001), urinary concentration of N and urea (P < 0.001), and concentration of urea (P < 0.001), IGF-1 (P < 0.001), and α-amino N (P < 0.001) in blood plasma. The plasma and urinary metabolites differing between dietary protein regime were mostly amino acids (AA) or their derivatives, metabolites of the tricarboxylic acid cycle, and glucuronidated compounds, almost all being higher in the pigs fed the A regime. This study shows that BiW affects absolute N retention but does not affect N efficiency in growing pigs. Therefore, in precision feeding concepts, BiW of pigs should be considered as a factor determining protein deposition capacity but less as a trait determining N efficiency.


Assuntos
Peso ao Nascer/fisiologia , Proteínas Alimentares/administração & dosagem , Nitrogênio/metabolismo , Suínos/crescimento & desenvolvimento , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Proteínas Alimentares/metabolismo , Fezes/química , Masculino , Suínos/sangue , Suínos/fisiologia , Suínos/urina , Ureia/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA