Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Ecol Appl ; 28(2): 442-456, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29205627

RESUMO

Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVITGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVITGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change processes, this study provided reference information for identification of desertification hotspots to support further grassland degradation and desertification treatment, and the method could be useful to be extended to other regions.


Assuntos
Conservação dos Recursos Naturais/tendências , Pradaria , Ásia Central , Secas
2.
Sensors (Basel) ; 8(12): 8156-8180, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27873981

RESUMO

The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM) using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing "more crop per drop" (increasing water productivity) becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1) crop productivity (ton/ha) maps (CPMs) involvingcrop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2) crop water use (m³/ha) maps (WUMs) (or actual seasonal evapotranspiration or actual ET) developed through Simplified Surface Energy Balance (SSEB) model; and (3) water productivity (kg/m³) maps (WPMs) produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET) by multiplying the ET fractionby reference ET. The ETfraction was determined using Landsat thermal imagery by selecting the "hot" pixels (zero ET) and "cold" pixels (maximum ET). The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m³) in water productivity of cotton fields with overwhelming proportion (87%) of the area having WP less than 0.30 kg/m³, 11% of the area having WP in range of 0.30-0.36 kg/m³, and only 2% of the area with WP greater than 0.36 kg/m³. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements through better land and water management practices.

3.
Sci Total Environ ; 579: 82-92, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866742

RESUMO

Due to rapid population growth and urbanization, paddy rice agriculture is experiencing substantial changes in the spatiotemporal pattern of planting areas in the two most populous countries-China and India-where food security is always the primary concern. However, there is no spatially explicit and continuous rice-planting information in either country. This knowledge gap clearly hinders our ability to understand the effects of spatial paddy rice area dynamics on the environment, such as food and water security, climate change, and zoonotic infectious disease transmission. To resolve this problem, we first generated annual maps of paddy rice planting areas for both countries from 2000 to 2015, which are derived from time series Moderate Resolution Imaging Spectroradiometer (MODIS) data and the phenology- and pixel-based rice mapping platform (RICE-MODIS), and analyzed the spatiotemporal pattern of paddy rice dynamics in the two countries. We found that China experienced a general decrease in paddy rice planting area with a rate of 0.72 million (m) ha/yr from 2000 to 2015, while a significant increase at a rate of 0.27mha/yr for the same time period happened in India. The spatial pattern of paddy rice agriculture in China shifted northeastward significantly, due to simultaneous expansions in paddy rice planting areas in northeastern China and contractions in southern China. India showed an expansion of paddy rice areas across the entire country, particularly in the northwestern region of the Indo-Gangetic Plain located in north India and the central and south plateau of India. In general, there has been a northwesterly shift in the spatial pattern of paddy rice agriculture in India. These changes in the spatiotemporal patterns of paddy rice planting area have raised new concerns on how the shift may affect national food security and environmental issues relevant to water, climate, and biodiversity.


Assuntos
Agricultura/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Monitoramento Ambiental , Oryza/crescimento & desenvolvimento , Imagens de Satélites , China , Mudança Climática , Índia
4.
Sci Rep ; 6: 20880, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864143

RESUMO

Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests.


Assuntos
Algoritmos , Conservação dos Recursos Naturais/estatística & dados numéricos , Monitoramento Ambiental/métodos , Imagens de Satélites/métodos , Ásia , Biodiversidade , Biomassa , Ciclo do Carbono , Monitoramento Ambiental/instrumentação , Florestas , Sistemas de Informação Geográfica , Humanos , Imagens de Satélites/instrumentação , Estações do Ano , Clima Tropical
5.
PLoS One ; 7(11): e49528, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185352

RESUMO

Since 1996 when Highly Pathogenic Avian Influenza type H5N1 first emerged in southern China, numerous studies sought risk factors and produced risk maps based on environmental and anthropogenic predictors. However little attention has been paid to the link between the level of intensification of poultry production and the risk of outbreak. This study revised H5N1 risk mapping in Central and Western Thailand during the second wave of the 2004 epidemic. Production structure was quantified using a disaggregation methodology based on the number of poultry per holding. Population densities of extensively- and intensively-raised ducks and chickens were derived both at the sub-district and at the village levels. LandSat images were used to derive another previously neglected potential predictor of HPAI H5N1 risk: the proportion of water in the landscape resulting from floods. We used Monte Carlo simulation of Boosted Regression Trees models of predictor variables to characterize the risk of HPAI H5N1. Maps of mean risk and uncertainty were derived both at the sub-district and the village levels. The overall accuracy of Boosted Regression Trees models was comparable to that of logistic regression approaches. The proportion of area flooded made the highest contribution to predicting the risk of outbreak, followed by the densities of intensively-raised ducks, extensively-raised ducks and human population. Our results showed that as little as 15% of flooded land in villages is sufficient to reach the maximum level of risk associated with this variable. The spatial pattern of predicted risk is similar to previous work: areas at risk are mainly located along the flood plain of the Chao Phraya river and to the south-east of Bangkok. Using high-resolution village-level poultry census data, rather than sub-district data, the spatial accuracy of predictions was enhanced to highlight local variations in risk. Such maps provide useful information to guide intervention.


Assuntos
Virus da Influenza A Subtipo H5N1/metabolismo , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Área Sob a Curva , Galinhas , Clima , Surtos de Doenças/veterinária , Patos , Epidemias , Inundações , Geografia , Método de Monte Carlo , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Análise de Regressão , Risco , Sensibilidade e Especificidade , Tailândia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA