Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 295(36): 12755-12771, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32719005

RESUMO

Collagen VI is a ubiquitous heterotrimeric protein of the extracellular matrix (ECM) that plays an essential role in the proper maintenance of skeletal muscle. Mutations in collagen VI lead to a spectrum of congenital myopathies, from the mild Bethlem myopathy to the severe Ullrich congenital muscular dystrophy. Collagen VI contains only a short triple helix and consists primarily of von Willebrand factor type A (VWA) domains, protein-protein interaction modules found in a range of ECM proteins. Disease-causing mutations occur commonly in the VWA domains, and the second VWA domain of the α3 chain, the N2 domain, harbors several such mutations. Here, we investigate structure-function relationships of the N2 mutations to shed light on their possible myopathy mechanisms. We determined the X-ray crystal structure of N2, combined with monitoring secretion efficiency in cell culture of selected N2 single-domain mutants, finding that mutations located within the central core of the domain severely affect secretion efficiency. In longer α3 chain constructs, spanning N6-N3, small-angle X-ray scattering demonstrates that the tandem VWA array has a modular architecture and samples multiple conformations in solution. Single-particle EM confirmed the presence of multiple conformations. Structural adaptability appears intrinsic to the VWA domain region of collagen VI α3 and has implications for binding interactions and modulating stiffness within the ECM.


Assuntos
Colágeno Tipo VI/química , Doenças Musculares , Mutação , Colágeno Tipo VI/genética , Cristalografia por Raios X , Humanos , Domínios Proteicos
2.
J Biol Chem ; 292(29): 12208-12219, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28578314

RESUMO

Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote.


Assuntos
Retículo Endoplasmático/enzimologia , Modelos Moleculares , Filogenia , Proteínas de Protozoários/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional , Sequência Conservada , Dimerização , Deleção de Genes , Duplicação Gênica , Transferência Genética Horizontal , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/isolamento & purificação , Homologia Estrutural de Proteína
3.
Anal Biochem ; 556: 23-34, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29908863

RESUMO

Biophysical screening techniques, such as surface plasmon resonance, enable detailed kinetic analysis of ligands binding to solubilised G-protein coupled receptors. The activity of a receptor solubilised out of the membrane is crucially dependent on the environment in which it is suspended. Finding the right conditions is challenging due to the number of variables to investigate in order to determine the optimum solubilisation buffer for any given receptor. In this study we used surface plasmon resonance technology to screen a variety of solubilisation conditions including buffers and detergents for two model receptors: CXCR4 and CCR5. We tested 950 different combinations of solubilisation conditions for both receptors. The activity of both receptors was monitored by using conformation dependent monoclonal antibodies and the binding of small molecule ligands. Despite both receptors belonging to the chemokine receptor family they show some differences in their preference for solubilisation conditions that provide the highest level of binding for both the conformation dependent antibodies and small molecules. The study described here is focused not only on finding the best solubilisation conditions for each receptor, but also on factors that determine the sensitivity of the assay for each receptor. We also suggest how these data about different buffers and detergents can be used as a guide for selecting solubilisation conditions for other membrane proteins.


Assuntos
Anticorpos Monoclonais/química , Receptores CCR5/análise , Receptores CXCR4/análise , Ressonância de Plasmônio de Superfície/métodos , Humanos , Solubilidade
4.
Mol Microbiol ; 102(3): 365-385, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27426054

RESUMO

Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ-phosphate of ATP to 2'-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C-terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine-derived nucleotides. In addition, we report the X-ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design.


Assuntos
Timidina Quinase/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/enzimologia , Pontos de Checagem do Ciclo Celular/fisiologia , Núcleosídeo-Fosfato Quinase/metabolismo , Relação Estrutura-Atividade , Timidina/metabolismo , Timidina Quinase/química , Timidina Monofosfato/metabolismo , Nucleotídeos de Timina/metabolismo , Trypanosoma brucei brucei/metabolismo
5.
Adv Exp Med Biol ; 922: 1-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27553231

RESUMO

The production of recombinant integral membrane proteins for structural and functional studies remains technically challenging due to their relatively low levels of expression. To address this problem, screening strategies have been developed to identify the optimal membrane sequence and expression host for protein production. A common approach is to genetically fuse the membrane protein to a fluorescent reporter, typically Green Fluorescent Protein (GFP) enabling expression levels, localization and detergent solubilisation to be assessed. Initially developed for screening the heterologous expression of bacterial membrane proteins in Escherichia coli, the method has been extended to eukaryotic hosts, including insect and mammalian cells. Overall, GFP-based expression screening has made a major impact on the number of membrane protein structures that have been determined in the last few years.


Assuntos
Genes Reporter , Proteínas Luminescentes/análise , Proteínas de Membrana/análise , Animais , Células Cultivadas , Escherichia coli/metabolismo , Células Eucarióticas/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/análise , Células HEK293/metabolismo , Humanos , Insetos/citologia , Proteínas Luminescentes/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Leveduras/metabolismo
6.
BMC Biotechnol ; 14: 92, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25394427

RESUMO

BACKGROUND: Neurotrophic factors influence survival, differentiation, proliferation and death of neuronal cells within the central nervous system. Human ciliary neurotrophic factor (hCNTF) has neuroprotective properties and is also known to influence energy balance. Consequently, hCNTF has potential therapeutic applications in neurodegenerative, obesity and diabetes related disorders. Clinical and biological applications of hCNTF necessitate a recombinant expression system to produce large amounts of functional protein in soluble form. Earlier attempts to express hCNTF in Escherichia coli (E. coli) were limited by low amounts and the need to refold from inclusion bodies. RESULTS: In this report, we describe a strategy to effectively identify constructs and conditions for soluble expression of hCNTF in E. coli. Small-scale expression screening with soluble fusion tags identified many conditions that yielded soluble expression. Codon optimized 6-His-hCNTF construct showed soluble expression in all the conditions tested. Large-scale culture of the 6-His-hCNTF construct yielded high (10 - 20 fold) soluble expression (8 - 9 fold) as compared to earlier published reports. Functional activity of recombinant 6-His-hCNTF produced was confirmed by its binding to hCNTF receptor (hCNTFRα) with an EC50 = 36 nM. CONCLUSION: Our results highlight the combination of codon optimization and screening soluble fusion tags as a successful strategy for high yielding soluble expression of hCNTF in E. coli. Codon optimization of the hCNTF sequence seems to be sufficient for soluble expression of hCNTF. The combined approach of codon optimization and soluble fusion tag screen can be an effective strategy for soluble expression of pharmaceutical proteins in E. coli.


Assuntos
Fator Neurotrófico Ciliar/genética , Códon , Expressão Gênica , Engenharia de Proteínas/métodos , Fator Neurotrófico Ciliar/química , Fator Neurotrófico Ciliar/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Solubilidade
7.
J Biol Chem ; 287(52): 43246-61, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23132860

RESUMO

Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin ß-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 Å revealing a C-terminal second α-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P(3); K(D) ∼100 µM) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P(3) as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P(2) on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P(3) is affected by the presence of PO(4) ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species.


Assuntos
Proteínas de Transporte/química , Simulação de Dinâmica Molecular , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Camundongos , Mutagênese , Fosfatos/química , Fosfatos/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1090-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695253

RESUMO

Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo(5)U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo(5)U and was annotated as an S-adenosyl-L-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-L-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry 1im8, suggests that the active site contains SCM-SAH and not SAM.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Transferases de Grupo de Um Carbono/química , RNA de Transferência/metabolismo , S-Adenosil-Homocisteína/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferases de Grupo de Um Carbono/metabolismo , Espectrometria de Massas em Tandem
9.
Blood ; 117(25): 6928-38, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21364188

RESUMO

Congenital dyserythropoietic anemia type 1 (CDA-1), a rare inborn anemia characterized by abnormal chromatin ultrastructure in erythroblasts, is caused by abnormalities in codanin-1, a highly conserved protein of unknown function. We have produced 3 monoclonal antibodies to codanin-1 that demonstrate its distribution in both nucleus and cytoplasm by immunofluorescence and allow quantitative measurements of patient and normal material by Western blot. A detailed analysis of chromatin structure in CDA-1 erythroblasts shows no abnormalities in overall histone composition, and the genome-wide epigenetic landscape of several histone modifications is maintained. However, immunofluorescence analysis of intermediate erythroblasts from patients with CDA-1 reveals abnormal accumulation of HP1α in the Golgi apparatus. A link between mutant codanin-1 and the aberrant localization of HP1α is supported by the finding that codanin-1 can be coimmunoprecipitated by anti-HP1α antibodies. Furthermore, we show colocalization of codanin-1 with Sec23B, the protein defective in CDA-2 suggesting that the CDAs might be linked at the molecular level. Mice containing a gene-trapped Cdan1 locus demonstrate its widespread expression during development. Cdan1(gt/gt) homozygotes die in utero before the onset of primitive erythropoiesis, suggesting that Cdan1 has other critical roles during embryogenesis.


Assuntos
Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/patologia , Proteínas Cromossômicas não Histona/análise , Eritroblastos/patologia , Glicoproteínas/genética , Mutação , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/patologia , Homólogo 5 da Proteína Cromobox , Eritroblastos/metabolismo , Feminino , Glicoproteínas/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares , Proteínas de Transporte Vesicular/análise
10.
Methods ; 55(1): 29-37, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21856427

RESUMO

A suite of protein fusion vectors is presented that has been designed so that nine separate fusion vectors can be constructed from one PCR product using InFusion™ cloning. These vectors in combination with a small scale Escherichia coli expression screen can be used to assess in parallel the effect of fusion tags on solubility. The vectors were tested with 20 target proteins and the results suggest that the vectors are useful both as a rescue strategy if the N-terminal hexa-histidine tagged construct does not express and also as part of a primary expression experiment.


Assuntos
Escherichia coli/genética , Expressão Gênica , Ensaios de Triagem em Larga Escala , Biologia Molecular/métodos , Proteínas Recombinantes de Fusão/biossíntese , Animais , Sequência de Bases , Clonagem Molecular , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Histidina/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Neisseria meningitidis , Oligopeptídeos/metabolismo , Pseudomonas aeruginosa , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA