Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 72018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29624168

RESUMO

The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age.


Assuntos
Envelhecimento , Proliferação de Células , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Células Secretoras de Insulina/patologia , NF-kappa B/metabolismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Perfilação da Expressão Gênica , Inflamação/imunologia , Inflamação/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , NF-kappa B/genética , Transdução de Sinais , Análise de Célula Única , Ativação Transcricional , Peixe-Zebra/imunologia
2.
Sci Rep ; 7(1): 3994, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652605

RESUMO

The pancreatic beta-cells control glucose homeostasis by secreting insulin in response to nutrient intake. The number of beta-cells is under tight metabolic control, as this number increases with higher nutrient intake. However, the signaling pathways matching nutrition with beta-cell mass plasticity remain poorly defined. By applying pharmacological and genetic manipulations, we show that reactive oxygen species (ROS) regulate dose-dependently beta-cell proliferation in vivo and in vitro. In particular, reducing ROS levels in beta-cells blocks their proliferation in response to nutrients. Using a non-invasive genetic sensor of intracellular hydrogen peroxide (H2O2), we reveal that glucose can directly increase the levels of H2O2. Furthermore, a moderate increase in H2O2 levels can stimulate beta-cell proliferation. Interestingly, while high H2O2 levels are inhibitory to beta-cell proliferation, they expand beta-cell mass in vivo by inducing rapid beta-cell neogenesis. Our study thus reveals a ROS-level-dependent mechanism linking nutrients with beta-cell mass plasticity. Hence, given the requirement of ROS for beta-cell mass expansion, antioxidant therapies should be applied with caution in diabetes.


Assuntos
Plasticidade Celular , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Espécies Reativas de Oxigênio , Animais , Animais Geneticamente Modificados , Linhagem Celular , Proliferação de Células , Peróxido de Hidrogênio/metabolismo , Peixe-Zebra
3.
Nat Commun ; 8(1): 664, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939870

RESUMO

The proliferative and functional heterogeneity among seemingly uniform cells is a universal phenomenon. Identifying the underlying factors requires single-cell analysis of function and proliferation. Here we show that the pancreatic beta-cells in zebrafish exhibit different growth-promoting and functional properties, which in part reflect differences in the time elapsed since birth of the cells. Calcium imaging shows that the beta-cells in the embryonic islet become functional during early zebrafish development. At later stages, younger beta-cells join the islet following differentiation from post-embryonic progenitors. Notably, the older and younger beta-cells occupy different regions within the islet, which generates topological asymmetries in glucose responsiveness and proliferation. Specifically, the older beta-cells exhibit robust glucose responsiveness, whereas younger beta-cells are more proliferative but less functional. As the islet approaches its mature state, heterogeneity diminishes and beta-cells synchronize function and proliferation. Our work illustrates a dynamic model of heterogeneity based on evolving proliferative and functional beta-cell states.Βeta-cells have recently been shown to be heterogeneous with regard to morphology and function. Here, the authors show that ß-cells in zebrafish switch from proliferative to functional states with increasing time since ß-cell birth, leading to functional and proliferative heterogeneity.


Assuntos
Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Proliferação de Células , Técnicas Citológicas/métodos , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/embriologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Urocortinas/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA