Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 28(4): 043107, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31906669

RESUMO

We explore the design parameter space of short (5-25 period), n-doped, Ga/(Al,Ga)As semiconductor superlattices (SSLs) in the sequential resonant tunneling regime. We consider SSLs at cool (77 K) and warm (295 K) temperatures, simulating the electronic response to variations in (a) the number of SSL periods, (b) the contact conductivity, and (c) the strength of disorder (aperiodicities). Our analysis shows that the chaotic dynamical phases exist on a number of sub-manifolds of codimension zero within the design parameter space. This result provides an encouraging guide towards the experimental observation of high-frequency intrinsic dynamical chaos in shorter SSLs.

2.
J Theor Biol ; 281(1): 1-8, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21458465

RESUMO

We apply a dynamic energy budget (DEB) model to the Icelandic capelin (Mallotus villosus) and introduce a new state variable to capture the roe production of individual fish. Species-specific coefficients are found for the capelin such as the shape coefficient and the Arrhenius temperature. We show how to link the DEB model to measurable quantities such as weight, length, fat, and roe content. We use data on measured 3-year old female capelin from 1999 to 2000 season from the Marine Research Institute of Iceland (MRI) and Matis, an Icelandic Food and Biotech R&D. We then find plausible parameter values for the DEB model by fitting the output of the model to these data. We obtain good fits between theory and observations, and the DEB model successfully reproduces weight, length, fat percentage and roe percentage of capelin. We discuss the effect of maturity on the spawning route of capelin, and describe how we intend to incorporate these results with an interacting particle model for the spawning migration of capelin.


Assuntos
Metabolismo Energético/fisiologia , Modelos Biológicos , Osmeriformes/fisiologia , Reprodução/fisiologia , Animais , Simulação por Computador , Feminino , Alimentos , Islândia , Estações do Ano , Temperatura , Água
3.
Phys Rev E ; 100(6-1): 061101, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962497

RESUMO

We compare the stochastic closure theory (SCT) to the Townsend-Perry constants as estimated from measurements in the Flow Physic Facility (FPF) at the University of New Hampshire. First, we explain the derivation of the Townsend-Perry constants, which were originally formulated by Meneveau and Marusic, in analogy with a Gaussian distribution. However, this was not supported by the data. Instead, the data show a sub-Gaussian relation that was explained by Birnir and Chen. We show herein how the SCT can be used to compute the constants, which explains their sub-Gaussian relations. We then compare the SCT theory predictions, including Reynolds-number-dependent corrections, with the data, showing good agreement.

4.
Sci Total Environ ; 682: 426-436, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31128362

RESUMO

Assessing and managing risks of anthropogenic activities to ecological systems is necessary to ensure sustained delivery of ecosystem services for future generations. Ecological models provide a means of quantitatively linking measured risk assessment endpoints with protection goals, by integrating potential chemical effects with species life history, ecological interactions, environmental drivers and other potential stressors. Here we demonstrate how an ecosystem modeling approach can be used to quantify insecticide-induced impacts on ecosystem services provided by a lake from toxicity data for organism-level endpoints. We used a publicly available aquatic ecosystem model AQUATOX that integrates environmental fate of chemicals and their impacts on food webs in aquatic environments. By simulating a range of exposure patterns, we illustrated how exposure to a hypothetical insecticide could affect aquatic species populations (e.g., recreational fish abundance) and environmental properties (e.g., water clarity) that would in turn affect delivery of ecosystem services. Different results were observed for different species of fish, thus the decision to manage the use of the insecticide for ecosystem services derived by anglers depends upon the favored species of fish. In our hypothetical shallow reservoir, water clarity was mostly driven by changes in food web dynamics, specifically the presence of zooplankton. In contrast to the complex response by fishing value, water clarity increased with reduced insecticide use, which produced a monotonic increase in value by waders and swimmers. Our study clearly showed the importance of considering nonlinear ecosystem feedbacks where the presence of insecticide changed the modeled food-web dynamics in unexpected ways. Our study highlights one of the main advantages of using ecological models for risk assessment, namely the ability to generalize to meaningful levels of organization and to facilitate quantitative comparisons among alternative scenarios and associated trade-offs among them while explicitly accounting for different groups of beneficiaries.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Ecossistema , Cadeia Alimentar , Lagos , Modelos Teóricos , Medição de Risco
5.
Sci Total Environ ; 649: 949-959, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179823

RESUMO

We demonstrate how mechanistic modeling can be used to predict whether and how biological responses to chemicals at (sub)organismal levels in model species (i.e., what we typically measure) translate into impacts on ecosystem service delivery (i.e., what we care about). We consider a hypothetical case study of two species of trout, brown trout (Salmo trutta; BT) and greenback cutthroat trout (Oncorhynchus clarkii stomias; GCT). These hypothetical populations live in a high-altitude river system and are exposed to human-derived estrogen (17α­ethinyl estradiol, EE2), which is the bioactive estrogen in many contraceptives. We use the individual-based model inSTREAM to explore how seasonally varying concentrations of EE2 could influence male spawning and sperm quality. Resulting impacts on trout recruitment and the consequences of such for anglers and for the continued viability of populations of GCT (the state fish of Colorado) are explored. inSTREAM incorporates seasonally varying river flow and temperature, fishing pressure, the influence of EE2 on species-specific demography, and inter-specific competition. The model facilitates quantitative exploration of the relative importance of endocrine disruption and inter-species competition on trout population dynamics. Simulations predicted constant EE2 loading to have more impacts on GCT than BT. However, increasing removal of BT by anglers can enhance the persistence of GCT and offset some of the negative effects of EE2. We demonstrate how models that quantitatively link impacts of chemicals and other stressors on individual survival, growth, and reproduction to consequences for populations and ecosystem service delivery, can be coupled with ecosystem service valuation. The approach facilitates interpretation of toxicity data in an ecological context and gives beneficiaries of ecosystem services a more explicit role in management decisions. Although challenges remain, this type of approach may be particularly helpful for site-specific risk assessments and those in which tradeoffs and synergies among ecosystem services need to be considered.


Assuntos
Disruptores Endócrinos/efeitos adversos , Exposição Ambiental , Etinilestradiol/efeitos adversos , Truta/metabolismo , Poluentes Químicos da Água/efeitos adversos , Animais , Masculino , Modelos Biológicos , Oncorhynchus/metabolismo , Reprodução/efeitos dos fármacos , Estações do Ano , Espermatozoides/efeitos dos fármacos
6.
PLoS One ; 12(10): e0186309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023580

RESUMO

Marine Protected Areas (MPA) are important management tools shown to protect marine organisms, restore biomass, and increase fisheries yields. While MPAs have been successful in meeting these goals for many relatively sedentary species, highly mobile organisms may get few benefits from this type of spatial protection due to their frequent movement outside the protected area. The use of a large MPA can compensate for extensive movement, but testing this empirically is challenging, as it requires both large areas and sufficient time series to draw conclusions. To overcome this limitation, MPA models have been used to identify designs and predict potential outcomes, but these simulations are highly sensitive to the assumptions describing the organism's movements. Due to recent improvements in computational simulations, it is now possible to include very complex movement assumptions in MPA models (e.g. Individual Based Model). These have renewed interest in MPA simulations, which implicitly assume that increasing the detail in fish movement overcomes the sensitivity to the movement assumptions. Nevertheless, a systematic comparison of the designs and outcomes obtained under different movement assumptions has not been done. In this paper, we use an individual based model, interconnected to population and fishing fleet models, to explore the value of increasing the detail of the movement assumptions using four scenarios of increasing behavioral complexity: a) random, diffusive movement, b) aggregations, c) aggregations that respond to environmental forcing (e.g. sea surface temperature), and d) aggregations that respond to environmental forcing and are transported by currents. We then compare these models to determine how the assumptions affect MPA design, and therefore the effective protection of the stocks. Our results show that the optimal MPA size to maximize fisheries benefits increases as movement complexity increases from ~10% for the diffusive assumption to ~30% when full environment forcing was used. We also found that in cases of limited understanding of the movement dynamics of a species, simplified assumptions can be used to provide a guide for the minimum MPA size needed to effectively protect the stock. However, using oversimplified assumptions can produce suboptimal designs and lead to a density underestimation of ca. 30%; therefore, the main value of detailed movement dynamics is to provide more reliable MPA design and predicted outcomes. Large MPAs can be effective in recovering overfished stocks, protect pelagic fish and provide significant increases in fisheries yields. Our models provide a means to empirically test this spatial management tool, which theoretical evidence consistently suggests as an effective alternative to managing highly mobile pelagic stocks.


Assuntos
Peixes/fisiologia , Modelos Teóricos , Animais , Biomassa , Conservação dos Recursos Naturais , Feminino , Pesqueiros , Peixes/crescimento & desenvolvimento , Movimento/fisiologia , Dinâmica Populacional , Temperatura
7.
Environ Toxicol Chem ; 36(4): 845-859, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28370293

RESUMO

Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. Environ Toxicol Chem 2017;36:845-859. © 2017 SETAC.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Teóricos , Gestão de Riscos , Animais , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Peixes/crescimento & desenvolvimento , Peixes/metabolismo , Água Doce/análise , Água Doce/química , Praguicidas/toxicidade , Medição de Risco/métodos , Gestão de Riscos/métodos , Gestão de Riscos/organização & administração , Qualidade da Água
8.
Phys Rev E ; 93(1): 011101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871015

RESUMO

A theory is developed to explain the sub-Gaussian behavior of the Townsend-Perry constants (A_{p}) recently measured for high-order fluctuation moments in turbulent boundary layers. It yields the generalized logarithmic law for high-order moments and A_{p}/A_{1}=(ℓ^{*})^{ζ_{p}/p-ζ_{1}}C_{p}^{1/p}/C_{1}, where ζ_{p} are the Kolmogorov-Obukhov-She-Leveque scaling characterizing intermittence effects; ℓ^{*}=1/225 is the only free parameter describing a specific ratio between inertial and energy-containing eddy sizes; C_{p} are raw moments of a Gaussian with unity mean and variance. The predicted A_{p}/A_{1} are in good agreement with experimental data.

9.
Phys Rev Lett ; 101(11): 114501, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18851285

RESUMO

We report that meandering of a rivulet flowing down a nonerodible, partially wetting incline is triggered by flow-rate fluctuations and sustained by external noise forcing. In our experiments, the former is provided by an electronically controlled valve, and the latter is due to fluid droplets left on the surface by previous meanderings. We observe power-law behavior of the averaged spectrum of the deviations of the stream from its center line, which rules out the existence of a preferred wavelength in ongoing meandering. We derive a simple theoretical model of rivulet meandering from first principles, incorporating stream dynamics and external noise forcing. The model provides an accurate statistical description of the stream deviation from a nonmeandering path.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA