Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Cell Sci ; 137(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38910449

RESUMO

RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.


Assuntos
Axônios , Cones de Crescimento , Microtúbulos , Transdução de Sinais , Proteína rhoA de Ligação ao GTP , Microtúbulos/metabolismo , Animais , Proteína rhoA de Ligação ao GTP/metabolismo , Axônios/metabolismo , Cones de Crescimento/metabolismo , Quinases Associadas a rho/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Ratos , Forminas/metabolismo , Células Cultivadas , Neurônios/metabolismo
2.
J Neurochem ; 166(5): 790-808, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37534523

RESUMO

Development of the mammalian neocortex requires proper inside-out migration of developing cortical neurons from the germinal ventricular zone toward the cortical plate. The mechanics of this migration requires precise coordination of different cellular phenomena including cytoskeleton dynamics, membrane trafficking, and cell adhesion. The small GTPases play a central role in all these events. The small GTPase Rab21 regulates migration and neurite growth in developing neurons. Moreover, regulators and effectors of Rab21 have been implicated in brain pathologies with cortical malformations, suggesting a key function for the Rab21 signaling pathway in cortical development. Mechanistically, it has been posited that Rab21 influences cell migration by controlling the trafficking of endocytic vesicles containing adhesion molecules. However, direct evidence of the participation of Rab21 or its mechanism of action in the regulation of cortical migration is still incomplete. In this study, we demonstrate that Rab21 plays a critical role in the differentiation and migration of pyramidal neurons by regulating the levels of the amyloid precursor protein on the neuronal cell surface. Rab21 loss of function increased the levels of membrane-exposed APP, resulting in impaired cortical neuronal differentiation and migration. These findings further our understanding of the processes governing the development of the cerebral cortex and shed light onto the molecular mechanisms behind cortical development disorders derived from the malfunctioning of Rab21 signaling effectors.


Assuntos
GTP Fosfo-Hidrolases , Neocórtex , Animais , GTP Fosfo-Hidrolases/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Neocórtex/metabolismo , Movimento Celular/fisiologia , Precursor de Proteína beta-Amiloide/metabolismo , Mamíferos/metabolismo
3.
Biol Cell ; 113(10): 419-437, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34021618

RESUMO

BACKGROUND INFORMATION: The endo-lysosomal system (ELS) comprises a set of membranous organelles responsible for transporting intracellular and extracellular components within cells. Defects in lysosomal proteins usually affect a large variety of processes and underlie many diseases, most of them with a strong neuronal impact. Mutations in the endoplasmic reticulum-resident CLN8 protein cause CLN8 disease. This condition is one of the 14 known neuronal ceroid lipofuscinoses (NCLs), a group of inherited diseases characterised by accumulation of lipofuscin-like pigments within lysosomes. Besides mediating the transport of soluble lysosomal proteins, recent research suggested a role for CLN8 in the transport of vesicles and lipids, and autophagy. However, the consequences of CLN8 deficiency on ELS structure and activity, as well as the potential impact on neuronal development, remain poorly characterised. Therefore, we performed CLN8 knockdown in neuronal and non-neuronal cell models to analyse structural, dynamic and functional changes in the ELS and to assess the impact of CLN8 deficiency on axodendritic development. RESULTS: CLN8 knockdown increased the size of the Golgi apparatus, the number of mobile vesicles and the speed of endo-lysosomes. Using the fluorescent fusion protein mApple-LAMP1-pHluorin, we detected significant lysosomal alkalisation in CLN8-deficient cells. In turn, experiments in primary rat hippocampal neurons showed that CLN8 deficiency decreased the complexity and size of the somatodendritic compartment. CONCLUSIONS: Our results suggest the participation of CLN8 in vesicular distribution, lysosomal pH and normal development of the dendritic tree. We speculate that the defects triggered by CLN8 deficiency on ELS structure and dynamics underlie morphological alterations in neurons, which ultimately lead to the characteristic neurodegeneration observed in this NCL. SIGNIFICANCE: This is, to our knowledge, the first characterisation of the effects of CLN8 dysfunction on the structure and dynamics of the ELS. Moreover, our findings suggest a novel role for CLN8 in somatodendritic development, which may account at least in part for the neuropathological manifestations associated with CLN8 disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Retículo Endoplasmático , Complexo de Golgi , Lisossomos , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Ratos
4.
J Neurochem ; 146(5): 570-584, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29972689

RESUMO

Rotenone, a broad-spectrum insecticide, piscicide and pesticide, produces a complete and selective suppression of axonogenesis in cultured hippocampal neurons. This effect is associated with an inhibition of actin dynamics through activation of Ras homology member A (RhoA) activity. However, the upstream signaling mechanisms involved in rotenone-induced RhoA activation were unknown. We hypothesized that rotenone might inhibit axon growth by the activation of RhoA/ROCK pathway because of the changes in microtubule (MT) dynamics and the concomitant release of Lfc, a MT-associated Guanine Nucleotide Exchange Factor (GEF) for RhoA. In this study, we demonstrate that rotenone decreases MT stability in morphologically unpolarized neurons. Taxol (3 nM), a drug that stabilizes MT, attenuates the inhibitory effect of rotenone (0.1 µM) on axon formation. Radiometric Forster Resonance Energy Transfer, revealed that this effect is associated with inhibition of rotenone-induced RhoA and ROCK activation. Interestingly, silencing of Lfc, but not of the RhoA GEF ArhGEF1, prevents the inhibitory effect of rotenone on axon formation. Our results suggest that rotenone-induced MT de-stabilization releases Lfc from MT thereby promoting RhoA and ROCK activities and the consequent inhibition of axon growth. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Inseticidas/uso terapêutico , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Rotenona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/citologia , Fosforilação/efeitos dos fármacos , Gravidez , Ratos , Transdução Genética , Tubulina (Proteína)/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Proteínas tau/metabolismo
5.
Hippocampus ; 24(5): 598-610, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24500839

RESUMO

Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for in vivo tract tracing or functional imaging of the central nervous system. However Mn(2+) may be toxic at high levels. In this study, we addressed the impact of Mn(2+) on mouse hippocampal neurons (HN) and neuron-like N2a cells in culture, using several approaches. Both HN and N2a cells not exposed to exogenous MnCl2 were shown by synchrotron X-ray fluorescence to contain 5 mg/g Mn. Concentrations of Mn(2+) leading to 50% lethality (LC50) after 24 h of incubation were much higher for N2a cells (863 mM) than for HN (90 mM). The distribution of Mn(2+) in both cell types exposed to Mn(2+) concentrations below LC50 was perinuclear whereas that in cells exposed to concentrations above LC50 was more diffuse, suggesting an overloading of cell storage/detoxification capacity. In addition, Mn(2+) had a cell-type and dose-dependent impact on the total amount of intracellular P, Ca, Fe and Zn measured by synchrotron X-ray fluorescence. For HN neurons, immunofluorescence studies revealed that concentrations of Mn(2+) below LC50 shortened neuritic length and decreased mitochondria velocity after 24 h of incubation. Similar concentrations of Mn(2+) also facilitated the opening of the mitochondrial permeability transition pore in isolated mitochondria from rat brains. The sensitivity of primary HN to Mn(2+) demonstrated here supports their use as a relevant model to study Mn(2+) -induced neurotoxicity.


Assuntos
Hipocampo/citologia , Manganês/farmacologia , Neurônios/efeitos dos fármacos , Oligoelementos/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/ultraestrutura , Fósforo/metabolismo , Espectrometria por Raios X , Fatores de Tempo , Zinco/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167315, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897255

RESUMO

Anti-ganglioside antibodies (anti-Gg Abs) have been linked to delayed/poor clinical recovery in both axonal and demyelinating forms of Guillain-Barrè Syndrome (GBS). In many instances, the incomplete recovery is attributed to the peripheral nervous system's failure to regenerate. The cross-linking of cell surface gangliosides by anti-Gg Abs triggers inhibition of nerve repair in both in vitro and in vivo axon regeneration paradigms. This mechanism involves the activation of the small GTPase RhoA, which negatively modulates the growth cone cytoskeleton. At present, the identity/es of the receptor/s responsible for transducing the signal that ultimately leads to RhoA activation remains poorly understood. The aim of this work was to identify the transducer molecule responsible for the inhibitory effect of anti-Gg Abs on nerve repair. Putative candidate molecules were identified through proteomic mass spectrometry of ganglioside affinity-captured proteins from rat cerebellar granule neurons (Prendergast et al., 2014). These candidates were evaluated using an in vitro model of neurite outgrowth with primary cultured dorsal root ganglion neurons (DRGn) and an in vivo model of axon regeneration. Using an shRNA-strategy to silence putative candidates on DRGn, we identified tumor necrosis factor receptor 1A protein (TNFR1A) as a transducer molecule for the inhibitory effect on neurite outgrowth from rat/mouse DRGn cultures of a well characterized mAb targeting the related gangliosides GD1a and GT1b. Interestingly, lack of TNFr1A expression on DRGn abolished the inhibitory effect on neurite outgrowth caused by anti-GD1a but not anti-GT1b specific mAbs, suggesting specificity of GD1a/transducer signaling. Similar results were obtained using primary DRGn cultures from TNFR1a-null mice, which did not activate RhoA after exposure to anti-GD1a mAbs. Generation of single point mutants at the stalk region of TNFR1A identified a critical amino acid for transducing GD1a signaling, suggesting a direct interaction. Finally, passive immunization with an anti-GD1a/GT1b mAb in an in vivo model of axon regeneration exhibited reduced inhibitory activity in TNFR1a-null mice compared to wild type mice. In conclusion, these findings identify TNFR1A as a novel transducer receptor for the inhibitory effect exerted by anti-GD1a Abs on nerve repair, representing a significant step forward toward understanding the factors contributing to poor clinical recovery in GBS associated with anti-Gg Abs.

7.
J Biol Chem ; 287(42): 35127-35138, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22904321

RESUMO

Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease.


Assuntos
Temperatura Baixa , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Células NIH 3T3 , Estrutura Terciária de Proteína
8.
Parasitol Res ; 112(4): 1813-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23315176

RESUMO

The early branching Giardia lamblia has highly polarized vacuoles, located underneath the plasma membrane, which have at least some of the characteristics of endosomes and of lysosomes. These peripheral vacuoles (PVs) are necessary for nutrient uptake and the maintenance of plasma membrane composition, but whether they carry out sorting and segregation of receptors and ligands is a matter of debate. Here, we showed that the internalization of low-density lipoprotein (LDL) to the PVs is highly dynamic in trophozoites with a rate similar to the internalization of the low-density lipoprotein receptor-related protein 1. Moreover, by analyzing receptor-mediated and fluid-phase endocytosis in living cells, we showed that after endocytosis LDL but not dextran moved laterally between the PVs. We speculate on PV functional heterogeneity and maturation in this parasite.


Assuntos
Endocitose , Endossomos/metabolismo , Giardia lamblia/fisiologia , Lisossomos/metabolismo , Vacúolos/metabolismo , Dextranos/metabolismo , Giardia lamblia/metabolismo , Lipoproteínas LDL/metabolismo
9.
Small ; 8(5): 671-5, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22228548

RESUMO

An approach is developped to gain control over the polarity of neuronal networks at the cellular level by physically constraining cell development by the use of micropatterns. It is demonstrated that the position and path of individual axons, the cell extension that propagates the neuron output signal, can be chosen with a success rate higher than 85%. This allows the design of small living computational blocks above silicon nanowires.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Nanofios/química , Neurônios/metabolismo , Silício/química , Animais , Axônios/ultraestrutura , Células Cultivadas , Dendritos/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Neurônios/ultraestrutura
10.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455998

RESUMO

Neurons are highly polarized cells requiring precise regulation of trafficking and targeting of membrane proteins to generate and maintain different and specialized compartments, such as axons and dendrites. Disruption of the Golgi apparatus (GA) secretory pathway in developing neurons alters axon/dendritic formation. Therefore, detailed knowledge of the mechanisms underlying vesicles exiting from the GA is crucial for understanding neuronal polarity. In this study, we analyzed the role of Brefeldin A-Ribosylated Substrate (CtBP1-S/BARS), a member of the C-terminal-binding protein family, in the regulation of neuronal morphological polarization and the exit of membrane proteins from the Trans Golgi Network. Here, we show that BARS is expressed during neuronal development in vitro and that RNAi suppression of BARS inhibits axonal and dendritic elongation in hippocampal neuronal cultures as well as largely perturbed neuronal migration and multipolar-to-bipolar transition during cortical development in situ. In addition, using plasma membrane (PM) proteins fused to GFP and engineered with reversible aggregation domains, we observed that expression of fission dominant-negative BARS delays the exit of dendritic and axonal membrane protein-containing carriers from the GA. Taken together, these data provide the first set of evidence suggesting a role for BARS in neuronal development by regulating post-Golgi membrane trafficking.


Assuntos
Complexo de Golgi , Neurônios , Axônios/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Rede trans-Golgi/metabolismo
11.
Biochem J ; 428(1): 33-45, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20199400

RESUMO

The parasite Giardia lamblia possesses PVs (peripheral vacuoles) that function as both endosomes and lysosomes and are implicated in the adaptation, differentiation and survival of the parasite in different environments. The mechanisms by which Giardia traffics essential proteins to these organelles and regulates their secretion have important implications in the control of parasite dissemination. In the present study, we describe the participation of the heterotetrameric clathrin-adaptor protein gAP2 (Giardia adaptor protein 2) complex in lysosomal protein trafficking. A specific monoclonal antibody against the medium subunit (gmu2) of gAP2 showed localization of this complex to the PVs, cytoplasm and plasma membrane in the growing trophozoites. gAP2 also co-localized with clathrin in the PVs, suggesting its involvement in endocytosis. Uptake experiments using standard molecules for the study of endocytosis revealed that gAP2 specifically participated in the endocytosis of LDL (low-density lipoprotein). Targeted down-regulation of the gene encoding gmu2 in growing and encysting trophozoites resulted in a large decrease in the amount of cell growth and cyst wall formation, suggesting a distinct mechanism in which gAP2 is directly involved in both endocytosis and vesicular trafficking.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endocitose/fisiologia , Giardia lamblia/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Complexo 2 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Anticorpos Monoclonais/imunologia , Membrana Celular/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Imunofluorescência , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Proteica , Proteínas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
12.
J Vis Exp ; (170)2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33970136

RESUMO

The accumulation of unfolded proteins within the endoplasmic reticulum (ER), caused by any stress condition, triggers the unfolded protein response (UPR) through the activation of specialized sensors. UPR attempts first to restore homeostasis; but if damage persists the signaling induces apoptosis. There is increasing evidence that sustained and unresolved ER stress contributes to many pathological conditions including neurodegenerative diseases. Because the UPR controls cell fate by switching between cytoprotective and apoptotic processes, it is essential to understand the events defining this transition, as well as the elements involved in its modulation. Recently, we demonstrated that abnormal GM2 ganglioside accumulation causes depletion of ER Ca2+ content, which in turn activates PERK (PKR-like-ER kinase), one of the UPR sensors. Furthermore, PERK signaling participates in the neurite atrophy and apoptosis induced by GM2 accumulation. In this respect, we have established an experimental system that allows us to molecularly modulate the expression of downstream PERK components and thus change vulnerability of neurons to undergo neuritic atrophy. We performed knockdown of calcineurin (cytoprotective) and CHOP (pro-apoptotic) expression in rat cortical neuronal cultures. Cells were infected with lentivirus-delivered specific shRNA and then treated with GM2 at different times, fixed and immunostained with anti-MAP2 (microtube-associated protein 2) antibody. Later, cell images were recorded using a fluorescence microscope and total neurite outgrowth was evaluated by using the public domain image processing software ImageJ. The inhibition of expression of those PERK signaling components clearly made it possible to either accelerate or delay the neuritic atrophy induced by ER stress. This approach might be used in cell system models of ER stress to evaluate the vulnerability of neurons to neurite atrophy.


Assuntos
Estresse do Retículo Endoplasmático/genética , Lentivirus/genética , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Feminino , Gravidez , Ratos , Ratos Wistar
13.
Neurobiol Stress ; 15: 100349, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34169122

RESUMO

Actin dynamics in dendritic spines can be associated with the neurobiological mechanisms supporting the comorbidity between stress exposure and cocaine increase rewards. The actin cytoskeleton remodeling in the nucleus accumbens (NA) has been implicated in the expression of stress-induced cross-sensitization with cocaine. The present study evaluates the involvement of cofilin, a direct regulator of actin dynamics, in the impact of stress on vulnerability to cocaine addiction. We assess whether the neurobiological mechanisms that modulate repeated-cocaine administration also occur in a chronic restraint stress-induced cocaine self-administration model. We also determine if chronic stress induces alterations in dendritic spines through dysregulation of cofilin activity in the NA core. Here, we show that the inhibition of cofilin expression in the NA core using viral short-hairpin RNA is sufficient to prevent the cocaine sensitization induced by chronic stress. The reduced cofilin levels also impede a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor surface expression enhancement and promote the reduction of head diameter in animals pre-exposed to stress after a cocaine challenge in the NA core. Moreover, downregulation of cofilin expression prevents facilitation of the acquisition of cocaine self-administration (SA) in male rats pre-exposed to chronic stress without modifying performance in sucrose SA. These findings reveal a novel, crucial role for cofilin in the neurobiological mechanisms underpinning the comorbidity between stress exposure and addiction-related disorders.

14.
J Neurosci ; 29(42): 13292-301, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19846717

RESUMO

Axonal elongation is one of the hallmarks of neuronal polarization. This phenomenon requires axonal membrane growth by exocytosis of plasmalemmal precursor vesicles (PPVs) at the nerve growth cone, a process regulated by IGF-1 activation of the PI3K (phosphatidylinositol-3 kinase) pathway. Few details are known, however, about the targeting mechanisms for PPVs. Here, we show, in cultured hippocampal pyramidal neurons and growth cones isolated from fetal rat brain, that IGF-1 activates the GTP-binding protein TC10, which triggers translocation to the plasma membrane of the exocyst component exo70 in the distal axon and growth cone. We also show that TC10 and exo70 function are necessary for addition of new membrane and, thus, axon elongation stimulated by IGF-1. Moreover, expression silencing of either TC10 or exo70 inhibit the establishment of neuronal polarity by hindering the insertion of IGF-1 receptor in one of the undifferentiated neurites. We conclude that, in hippocampal pyramidal neurons in culture, (1) membrane expansion at the axonal growth cone is regulated by IGF-1 via a cascade involving TC10 and the exocyst complex, (2) TC10 and exo70 are essential for the polarized externalization of IGF-1 receptor, and (3) this process is necessary for axon specification.


Assuntos
Axônios/fisiologia , Axônios/ultraestrutura , Fator de Crescimento Insulin-Like I/farmacologia , Células Piramidais/citologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Axônios/efeitos dos fármacos , Células Cultivadas , Estruturas Celulares/efeitos dos fármacos , Estruturas Celulares/metabolismo , Cromonas/farmacologia , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Morfolinas/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptor IGF Tipo 1/fisiologia , Fatores de Tempo , Transfecção/métodos
15.
Nat Neurosci ; 9(8): 993-5, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16845384

RESUMO

How a neuron becomes polarized remains largely unknown. Results obtained with a function-blocking antibody and an siRNA targeting the insulin-like growth factor-1 (IGF-1) receptor suggest that an essential step in the establishment of hippocampal neuronal polarity and the initiation of axonal outgrowth is the activation of the phosphatidylinositol 3-kinase (PI3k)-Cdc42 pathway by the IGF-1 receptor, but not by the TrkA or TrkB receptors.


Assuntos
Polaridade Celular , Hipocampo/citologia , Neurônios/citologia , Receptor IGF Tipo 1/metabolismo , Animais , Células Cultivadas , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptor IGF Tipo 1/genética , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
Sci Rep ; 10(1): 2917, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076054

RESUMO

Fluorescent nanoscopy approaches have been used to characterize the periodic organization of actin, spectrin and associated proteins in neuronal axons and dendrites. This membrane-associated periodic skeleton (MPS) is conserved across animals, suggesting it is a fundamental component of neuronal extensions. The nanoscale architecture of the arrangement (190 nm) is below the resolution limit of conventional fluorescent microscopy. Fluorescent nanoscopy, on the other hand, requires costly equipment and special analysis routines, which remain inaccessible to most research groups. This report aims to resolve this issue by using protein-retention expansion microscopy (pro-ExM) to reveal the MPS of axons. ExM uses reagents and equipment that are readily accessible in most neurobiology laboratories. We first explore means to accurately estimate the expansion factors of protein structures within cells. We then describe the protocol that produces an expanded specimen that can be examined with any fluorescent microscopy allowing quantitative nanoscale characterization of the MPS. We validate ExM results by direct comparison to stimulated emission depletion (STED) nanoscopy. We conclude that ExM facilitates three-dimensional, multicolor and quantitative characterization of the MPS using accessible reagents and conventional fluorescent microscopes.


Assuntos
Axônios/metabolismo , Microscopia de Fluorescência/métodos , Espectrina/metabolismo , Animais , Calibragem , Membrana Celular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Ratos Wistar , Reprodutibilidade dos Testes
17.
J Neurosci ; 28(37): 9297-308, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18784310

RESUMO

In non-neuronal cells, inactivation of protein kinase D (PKD) blocks fission of trans-Golgi network (TGN) transport carriers, inducing the appearance of long tubules filled with cargo. We now report on the function of PKD1 in neuronal protein trafficking. In cultured hippocampal pyramidal cells, the transferrin receptor (TfR) and the low-density receptor-related protein (LRP) are predominantly transported to dendrites and excluded from axons. Expression of kinase-inactive PKD1 or its depletion by RNA interference treatment dramatically and selectively alter the intracellular trafficking and membrane delivery of TfR- and LRP-containing vesicles, without inhibiting exit from the TGN or inducing Golgi tubulation. After PKD1 suppression, dendritic membrane proteins are mispackaged into carriers that transport VAMP2; these vesicles are distributed to both axons and dendrites, but are rapidly endocytosed from dendrites and preferentially delivered to the axonal membrane. A kinase-defective mutant of PKD1 lacking the ability to bind diacylglycerol and hence its Golgi localization does not cause missorting of TfR or LRP. These results suggest that in neurons PKD1 regulates TGN-derived sorting of dendritic proteins and hence has a role in neuronal polarity.


Assuntos
Dendritos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Neurônios/fisiologia , Proteínas Quinases/fisiologia , Receptores da Transferrina/metabolismo , Animais , Células Cultivadas , Dendritos/efeitos dos fármacos , Embrião de Mamíferos , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Proteína Quinase C , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Ratos , Fatores de Tempo , Transfecção/métodos , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Gravação de Videoteipe/métodos , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
18.
Neural Regen Res ; 14(5): 762-766, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30688258

RESUMO

Neurons are the most extensive and polarized cells that display a unique single long axon and multiple dendrites, which are compartments exhibiting structural and functional differences. Polarity occurs early in neuronal development and it is maintained by complex subcellular mechanisms throughout cell life. A well-defined and controlled spatio-temporal program of cellular and molecular events strictly regulates the formation of the axon and dendrites from a non-polarized cell. This event is critical for an adequate neuronal wiring and therefore for the normal functioning of the nervous system. Neuronal polarity is very sensitive to the harmful effects of different factors present in the environment. In this regard, rotenone is a crystalline, colorless and odorless isoflavone used as insecticide, piscicide and broad spectrum pesticide commonly used earlier in agriculture. In the present review we will summarize the toxicity mechanism caused by this pesticide in different neuronal cell types, focusing on a particular biological mechanism whereby rotenone could impair neuronal polarization in cultured hippocampal neurons. Recent advances suggest that the inhibition of axonogenesis produced by rotenone could be related with its effect on microtubule dynamics, the actin cytoskeleton and their regulatory pathways, particularly affecting the small RhoGTPase RhoA. Unveiling the mechanism by which rotenone produces neurotoxicity will be instrumental to understand the cellular mechanisms involved in neurodegenerative diseases influenced by this environmental pollutant, which may lead to research focused on the design of new therapeutic strategies.

19.
Curr Biol ; 15(20): 1820-6, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16243028

RESUMO

Activity-prompted dendritic remodeling leads to calcium-influx-dependent activation of signaling pathways within minutes and gene transcription within hours. However, dendrite growth continues for days and requires extension and stabilization of the cytoskeleton in nascent processes. In addition to binding microtubules, microtubule-associated proteins (MAPs) associate with the actin cytoskeleton, anchor ion channels and signaling complexes, and modulate synaptic growth. MAP2 is predominantly dendritic. MAP1B is at postsynaptic densities (PSD) and modulates ion channel activity, in addition to affecting axon growth. Less is known about MAP1A, but it is also enriched in dendrites at input locations, including PSDs where MAP1A associates with channel complexes and the calcium sensor caldendrin. MAP1A rescued hearing loss in tubby mice. Here we show that MAP1A becomes enriched in dendrites concurrently with dendritic branching and synapse formation in the developing brain; that synaptic activity is required for establishing mature MAP1A expression levels; and that MAP1A expression is required for activity-dependent growth, branching, and stabilization of the dendritic arbor.


Assuntos
Dendritos/fisiologia , Expressão Gênica , Hipocampo/citologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Animais , Hipocampo/crescimento & desenvolvimento , Immunoblotting , Imuno-Histoquímica , Microscopia de Fluorescência , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
20.
Dev Neurobiol ; 78(3): 170-180, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29090510

RESUMO

Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.


Assuntos
Axônios/metabolismo , Membrana Celular/metabolismo , Animais , Crescimento Celular , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA