Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 156(1): 014504, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998353

RESUMO

We control the anisotropic molecular packing of vapor-deposited glasses of ABH113, a deuterated anthracene derivative with promise for future organic light emitting diode materials, by changing the deposition rate and substrate temperature at which they are prepared. We find that at substrate temperatures from 0.65 Tg to 0.92 Tg, the deposition rate significantly modifies the orientational order in the vapor-deposited glasses as characterized by x-ray scattering and birefringence. Both measures of anisotropic order can be described by a single deposition rate-substrate temperature superposition (RTS). This supports the applicability of the surface equilibration mechanism and generalizes the RTS principle from previous model systems with liquid crystalline order to non-mesogenic organic semiconductors. We find that vapor-deposited glasses of ABH113 have significantly enhanced density and thermal stability compared to their counterparts prepared by liquid-cooling. For organic semiconductors, the results of this study provide an efficient guide for using the deposition rate to prepare stable glasses with controlled molecular packing.

2.
J Chem Phys ; 156(9): 094710, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259874

RESUMO

Surface diffusion has been measured in the glass of an organic semiconductor, MTDATA, using the method of surface grating decay. The decay rate was measured as a function of temperature and grating wavelength, and the results indicate that the decay mechanism is viscous flow at high temperatures and surface diffusion at low temperatures. Surface diffusion in MTDATA is enhanced by 4 orders of magnitude relative to bulk diffusion when compared at the glass transition temperature Tg. The result on MTDATA has been analyzed along with the results on other molecular glasses without extensive hydrogen bonds. In total, these systems cover a wide range of molecular geometries from rod-like to quasi-spherical to discotic and their surface diffusion coefficients vary by 9 orders of magnitude. We find that the variation is well explained by the existence of a steep surface mobility gradient and the anchoring of surface molecules at different depths. Quantitative analysis of these results supports a recently proposed double-exponential form for the mobility gradient: log D(T, z) = log Dv(T) + [log D0 - log Dv(T)]exp(-z/ξ), where D(T, z) is the depth-dependent diffusion coefficient, Dv(T) is the bulk diffusion coefficient, D0 ≈ 10-8 m2/s, and ξ ≈ 1.5 nm. Assuming representative bulk diffusion coefficients for these fragile glass formers, the model reproduces the presently known surface diffusion rates within 0.6 decade. Our result provides a general way to predict the surface diffusion rates in molecular glasses.

3.
Proc Natl Acad Sci U S A ; 116(43): 21421-21426, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31527259

RESUMO

We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction. Understanding of the mechanism enables informed engineering of different levels of smectic order in vapor-deposited glasses to suit various applications. The preparation of a glass with orientational and translational order from a nonliquid crystal opens up an exciting paradigm for accessing extreme anisotropy in glassy solids.

4.
Soft Matter ; 16(21): 5062-5070, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32453335

RESUMO

The method of surface grating decay has been used to measure surface diffusion in the glasses of two rod-like molecules posaconazole (POS) and itraconazole (ITZ). Although structurally similar antifungal medicines, ITZ forms liquid-crystalline phases while POS does not. Surface diffusion in these systems is significantly slower than in the glasses of quasi-spherical molecules of similar volume when compared at the glass transition temperature Tg. Between the two systems, ITZ has slower surface diffusion. These results are explained on the basis of the near-vertical orientation of the rod-like molecules at the surface and their deep penetration into the bulk where mobility is low. For molecular glasses without extensive hydrogen bonds, we find that the surface diffusion coefficient at Tg decreases smoothly with the penetration depth of surface molecules and the trend has the double-exponential form for the surface mobility gradient observed in simulations. This supports the view that these molecular glasses have a similar mobility vs. depth profile and their different surface diffusion rates arise simply from the different depths at which molecules are anchored. Our results also provide support for a previously observed correlation between the rate of surface diffusion and the fragility of the bulk liquid.

5.
Soft Matter ; 14(37): 7569-7577, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30065982

RESUMO

Controlling the orientation of liquid crystal (LC) molecules towards contacting surfaces is a crucial requirement for the development of LC displays and passive electro-optical devices. Up to now, research has been focused on photo-responses of a LC azobenzene polymer system to obtain either planar or homeotropic orientation of LCs. It remains a challenge, however, to tune the polar angle of LC molecules on the solid surface and gain more insights about the polymer chain conformation extending in LC medium. Here, we deposit a liquid crystalline side chain polymer brush, poly(6-(4-methoxy-azobenzene-4'-oxy)hexyl methacrylate) (PMMAZO), onto the solid surface with film thickness varying between ∼3 nm and 13 nm; therefore, the grafting density of the brush layer ranges from 0.0219 to 0.0924 chains per nm2. When LCs are confined in hybrid cells with a top surface eliciting uniform homeotropic anchoring and a bottom surface covered by the PMMAZO brush, the out-of-plane polar angle of 4-pentyl-4'-cyanobiphenyl (5CB) on the brush layer gradually changes from ∼0° to ∼62° by simply increasing the grafting brush density. The surface forces apparatus (SFA) measurement is used to determine 5CB as a good solvent for the PMMAZO brush and understand the relationship between the chain conformation in 5CB and the anchoring behavior of LC molecules on the polymer brush layer. For high grafting density, the polymer chain in 5CB extends significantly away from the substrate, making the side chain mesogens on average almost parallel to the substrate; for the low-density case, the main chain extends in the narrow region around the surface for aligning the mesogens perpendicular to the substrate.

6.
J Chem Phys ; 146(5): 054503, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178836

RESUMO

We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ∼105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

7.
Soft Matter ; 12(41): 8595-8605, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27722676

RESUMO

The morphology and through-film optical properties of nematic liquid crystals (LCs) confined between two surfaces may be engineered to create switches that respond to external electric fields, thereby enabling applications in optoelectronics that require fast responses and low power. Interfacial properties between the confining surfaces and the LC play a central role in device design and performance. Here we investigate the morphology of LCs confined in hybrid cells with a top surface that exhibits uniform homeotropic anchoring and a bottom surface that is chemically patterned with sub-micron and micron- wide planar anchoring stripes in a background of homeotropic anchoring. In a departure from past work, we first investigate isolated stripes, as opposed to dense periodic arrays of stripes, thereby allowing for an in-depth interpretation of the effects of patterning on LC morphology. We observe three LC morphologies and sharp transitions between them as a function of stripe width in the submicron and micron regimes. Numerical simulations and theory help explain the roles of anchoring energy, elastic deformation, entropy, pattern geometry, and coherence length of the LC in the experimentally observed behavior. The knowledge and models developed from an analysis of results generated on isolated features are then used to design dense patterned substrates for high-contrast and efficient orientational switching of LCs in response to applied fields.

8.
J Phys Chem B ; 125(1): 461-466, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356278

RESUMO

The instability of glassy solids poses a key limitation to their use in several technological applications. Well-packed organic glasses, prepared by physical vapor deposition (PVD), have drawn attention recently because they can exhibit significantly higher thermal and chemical stability than glasses prepared from more traditional routes. We show here that PVD glasses can also show enhanced resistance to crystallization. By controlling the deposition temperature, resistance toward crystallization can be enhanced by at least a factor of ten in PVD glasses of the model organic semiconductor Alq3 (tris(8-hydroxyquinolinato) aluminum). PVD glasses of Alq3 first transform into a supercooled liquid before crystallizing. By controlling the deposition temperature, we increase the glass → liquid transformation time thereby also increasing the overall time for crystallization. We thus demonstrate a new strategy to stabilize glasses of organic semiconductors against crystallization, which is a common failure mechanism in organic light emitting diode devices.

9.
J Phys Chem B ; 125(10): 2761-2770, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33683124

RESUMO

We investigate vapor-deposited glasses of a phenanthroperylene ester, known to form an equilibrium hexagonal columnar phase, and show that liquid crystal-like order can be manipulated by the choice of deposition rate and substrate temperature during deposition. We find that rate-temperature superposition (RTS)-the equivalence of lowering the deposition rate and increasing the substrate temperature-can be used to predict and control the molecular orientation in vapor-deposited glasses over a wide range of substrate temperatures (0.75-1.0 Tg). This work extends RTS to a new structural motif, hexagonal columnar liquid crystal order, which is being explored for organic electronic applications. By several metrics, including the apparent average face-to-face nearest-neighbor distance, physical vapor deposition (PVD) glasses of the phenanthroperylene ester are as ordered as the glass prepared by cooling the equilibrium liquid crystal. By other measures, the PVD glasses are less ordered than the cooled liquid crystal. We explain the difference in the maximum attainable order with the existence of a gradient in molecular mobility at the free surface of a liquid crystal and its impact upon different mechanisms of structural rearrangement. This free surface equilibration mechanism explains the success of the RTS principle and provides guidance regarding the types of order most readily enhanced by vapor deposition. This work extends the applicability of RTS to include molecular systems with a diverse range of higher-order liquid-crystalline morphologies that could be useful for new organic electronic applications.

10.
J Phys Chem B ; 124(12): 2505-2513, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32118438

RESUMO

The anisotropic properties of organic glasses produced by physical vapor deposition (PVD) depend upon substrate temperature and deposition rate. In recent work, it was shown for a liquid crystalline system that the anisotropic structure of the glass was controlled by a single combined variable as indicated by the observation of deposition rate-substrate temperature superposition (RTS). Here we test the utility of RTS for posaconazole, a molecule that does not form liquid crystals. We prepare glasses of posaconazole utilizing a range of deposition rates covering 2 orders of magnitude and an 18 K range in substrate temperature. We characterize the glasses using ellipsometry and X-ray scattering. Consistent with RTS, we find that decreasing the deposition rate has the same effect upon molecular orientation as increasing the substrate temperature during deposition. Thus, RTS can be used to predict and control the structure of glasses prepared at a wide range of deposition conditions. We use RTS to infer a characteristic time for molecular reorientation at the surface of posaconazole.

11.
ACS Appl Mater Interfaces ; 12(23): 26717-26726, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32402187

RESUMO

While the bulk structure of vapor-deposited glasses has been extensively studied, structure at buried interfaces has received little attention, despite being important for organic electronic applications. To learn about glass structure at buried interfaces, we study the structure of vapor-deposited glasses of the organic semiconductor DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene) as a function of film thickness; the structure is probed with grazing incidence X-ray scattering. We deposit on silicon and gold substrates and span a film thickness range of 10-600 nm. Our experiments demonstrate that interfacial molecular packing in vapor-deposited glasses of DSA-Ph is more disordered compared to the bulk. At a deposition temperature near room temperature, we estimate ∼8 nm near the substrate can have modified molecular packing. Molecular dynamics simulations of a coarse-grained representation of DSA-Ph reveal a similar length scale. In both the simulations and the experiments, deposition temperature controls glass structure beyond this interfacial layer of a few nanometers.

12.
J Phys Chem Lett ; 10(13): 3536-3542, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31177780

RESUMO

We show that deposition rate substantially affects the anisotropic structure of thin glassy films produced by physical vapor deposition. Itraconazole, a glass-forming liquid crystal, was deposited at rates spanning 3 orders of magnitude over a 25 K range of substrate temperatures, and structure was characterized by ellipsometry and X-ray scattering. Both the molecular orientation and the spacing of the smectic layers obey deposition rate-substrate temperature superposition, such that lowering the deposition rate is equivalent to raising the substrate temperature. We identify two different surface relaxations that are responsible for structural order in the vapor-deposited glasses and find that the process controlling molecular orientation is accelerated by more than 3 orders of magnitude at the surface relative to the bulk. The identification of distinct surface processes responsible for anisotropic structural features in vapor-deposited glasses will enable more precise control over the structure of glassy materials used in organic electronics.

13.
ACS Nano ; 11(6): 6492-6501, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28605183

RESUMO

In exploiting topological defects of liquid crystals as the targeting sites for trapping colloidal objects, previous work has relied on topographic features with uniform anchoring to create defects, achieving limited density and spacing of particles. We report a generalizable strategy to create topological defects on chemically patterned surfaces to assemble particles in precisely defined locations with a tunable interparticle distance at nanoscale dimensions. Informed by experimental observations and numerical simulations that indicate that liquid crystals, confined between a homeotropic-anchoring surface and a surface with lithographically defined planar-anchoring stripes in a homeotropic-anchoring background, display splay-bend deformation, we successfully create pairs of defects and subsequently trap particles with controlled spacing by designing patterns of intersecting stripes aligned at 45° with homeotropic-anchoring gaps at the intersections. Application of electric fields allows for dynamic control of trapped particles. The tunability, responsiveness, and adaptability of this platform provide the opportunities for assembly of colloidal structures toward functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA