Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Geol Soc Am Bull ; 132(1-2): 17-30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33958812

RESUMO

The presence of abundant phyllosilicate minerals in Noachian (>3.7 Ga) rocks on Mars has been taken as evidence that liquid water was stable at or near the surface early in martian history. This study investigates some of these clay-rich strata exposed in crater rim and inverted terrain settings in the Mawrth Vallis region of Mars. In Muara crater the 200-m-thick, clay-rich Mawrth Vallis Group (MVG) is subdivided into five informal units numbered 1 (base) to 5 (top). Unit 1 consists of interbedded sedimentary and volcanic or volcaniclastic units showing weak Fe/Mg-smectite alteration deposited in a range of subaerial depositional settings. Above a major unconformity eroded on Unit 1, the dark-toned sediments of Unit 2 and lower Unit 3 are inferred to represent mainly wind-blown sand. These are widely interlayered with and draped by thin layers of light-toned sediment representing fine suspended-load aeolian silt and clay. These sediments show extensive Fe/Mg-smectite alteration, probably reflecting subaerial weathering. Upper Unit 3 and units 4 and 5 are composed of well-layered, fine-grained sediment dominated by Al-phyllosilicates, kaolinite, and hydrated silica. Deposition occurred in a large lake or arm of a martian sea. In the inverted terrain 100 km to the NE, Unit 4 shows very young slope failures suggesting that the clay-rich sediments today retain a significant component of water ice. The MVG provides evidence for the presence of large, persistent standing bodies of water on early Mars as well as a complex association of flanking shoreline, alluvial, and aeolian systems. Some of the clays, especially the Fe/Mg smectites in upper units 1 and 2 appear to have formed through subaerial weathering whereas the aluminosilicates, kaolinite, and hydrated silica of units 3, 4, and 5 formed mainly through alteration of fine sediment in subaqueous environments.

2.
Am Mineral ; 99(8-9): 1580-1592, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32042202

RESUMO

K+, Na+, Ca2+, Mg2+, Fe2+, Fe3+, and Al3+ perchlorate salts were studied to provide spectral and thermal data for detecting and characterizing their possible presence on Mars. Spectral and thermal analyses are coordinated with structural analyses to understand how different cations and different hydration levels affect the mineral system. Near-infrared (NIR) spectral features for perchlorates are dominated by H2O bands that occur at 0.978-1.01, 1.17-1.19, 1.42-1.48, 1.93-1.99, and 2.40-2.45 µm. Mid-IR spectral features are observed for vibrations of the tetrahedral ClO 4 - ion and occur as reflectance peaks at 1105-1130 cm-1 (~8.6-9 µm), 760-825 cm-1 (~12-13 µm), 630 cm-1 (~15.9 µm), 460-495 (~20-22 µm), and 130-215 (~50-75 µm). The spectral bands in both regions are sensitive to the type of cation present because the polarizing power is related to the band center for many of the spectral features. Band assignments were confirmed for many of the spectral features due to opposing trends in vibrational energies for the ClO 4 - and H2O groups connected to different octahedral cations. Differential scanning calorimetry (DSC) data show variable patterns of water loss and thermal decomposition temperatures for perchlorates with different cations, consistent with changes in spectral features measured under varying hydration conditions. Results of the DSC analyses indicate that the bond energies of H2O in perchlorates are different for each cation and hydration state. Structural parameters are available for Mg perchlorates (Robertson and Bish 2010) and the changes in structure due to hydration state are consistent with DSC parameters and spectral features. Analyses of changes in the Mg perchlorate structures with H2O content inform our understanding of the effects of hydration on other perchlorates, for which the specific structures are less well defined. Spectra of the hydrated Fe2+ and Fe3+ perchlorates changed significantly upon heating to 100 °C or measurement under low-moisture conditions indicating that they are less stable than other perchlorates under dehydrated conditions. The perchlorate abundances observed by Phoenix and MSL are likely too low to be identified from orbit by CRISM, but may be sufficient to be identifiable by a VNIR imager on a future rover.

3.
Proc Natl Acad Sci U S A ; 107(27): 12095-100, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20616087

RESUMO

Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.


Assuntos
Meio Ambiente Extraterreno/química , Marte , Silicatos/análise , Silicatos de Alumínio/análise , Silicatos de Alumínio/química , Asbestos Serpentinas/análise , Asbestos Serpentinas/química , Cloretos/análise , Cloretos/química , Compostos Férricos/análise , Compostos Férricos/química , Temperatura Alta , Caulim/análise , Caulim/química , Minerais/análise , Minerais/química , Silicatos/química , Análise Espectral/métodos , Fatores de Tempo
4.
Nat Astron ; 5(9): 936-942, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541329

RESUMO

In situ investigations by the Mars Science Laboratory, Curiosity rover, have confirmed the presence of an ancient lake in Gale crater for up to 10 million years. The lake was filled with sediments that eventually converted to a compacted sandstone. However, it remains unclear whether the infilling of the lake was the result of background sedimentation processes or represents punctual flooding events in a largely isolated lake. Here we used the XRD data obtained with the Chemistry and Mineralogy instrument (CheMin), on board the Curiosity rover, to characterize the degree of disorder of clay minerals in the Murray formation (MF) at Gale crater. Our analysis shows that they are structurally and compositionally related to glauconitic clays, which are a sensitive proxy of quiescent conditions in liquid bodies for extended periods of time. Such results provide evidence of long periods of extremely low sedimentation in an ancient brackish lake on Mars, signature of an aqueous regime with slow evaporation at low temperatures. More in general, the identification of lacustrine glauconitic clays on Mars provides a key parameter in the characterization of aqueous Martian paleoenvironments that may once have harbored life.

5.
Astrobiology ; 20(2): 199-234, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916851

RESUMO

After the successful landing of the Mars Science Laboratory rover, both NASA and ESA initiated a selection process for potential landing sites for the Mars2020 and ExoMars missions, respectively. Two ellipses located in the Mawrth Vallis region were proposed and evaluated during a series of meetings (three for Mars2020 mission and five for ExoMars). We describe here the regional context of the two proposed ellipses as well as the framework of the objectives of these two missions. Key science targets of the ellipses and their astrobiological interests are reported. This work confirms that the proposed ellipses contain multiple past martian wet environments of a subaerial, subsurface, and/or subaqueous character, in which to probe the past climate of Mars; build a broad picture of possible past habitable environments; evaluate their exobiological potentials; and search for biosignatures in well-preserved rocks. A mission scenario covering several key investigations during the nominal mission of each rover is also presented, as well as descriptions of how the site fulfills the science requirements and expectations of in situ martian exploration. These serve as a basis for potential future exploration of the Mawrth Vallis region with new missions and describe opportunities for human exploration of Mars in terms of resources and science discoveries.


Assuntos
Exobiologia/métodos , Marte , Voo Espacial
6.
Sci Rep ; 10(1): 15097, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934272

RESUMO

The presence of organic matter in lacustrine mudstone sediments at Gale crater was revealed by the Mars Science Laboratory Curiosity rover, which also identified smectite clay minerals. Analogue experiments on phyllosilicates formed under low temperature aqueous conditons have illustrated that these are excellent reservoirs to host organic compounds against the harsh surface conditions of Mars. Here, we evaluate whether the capacity of smectites to preserve organic compounds can be influenced by a short exposure to different diagenetic fluids. We analyzed the stability of glycine embedded within nontronite samples previously exposed to either acidic or alkaline fluids (hereafter referred to as "treated nontronites") under Mars-like surface conditions. Analyses performed using multiple techniques showed higher photodegradation of glycine in the acid-treated nontronite, triggered by decarboxylation and deamination processes. In constrast, our experiments showed that glycine molecules were preferably incorporated by ion exchange in the interlayer region of the alkali-treated nontronite, conferring them a better protection against the external conditions. Our results demonstrate that smectite previously exposed to fluids with different pH values influences how glycine is adsorbed into their interlayer regions, affecting their potential for preservation of organic compounds under contemporary Mars surface conditions.

7.
Icarus ; 3412020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34045770

RESUMO

Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters. Transitions in mineralogic units were characterized using visible/near-infrared (VNIR) spectral properties and surface morphology. We identified and characterized complex "doublet" type spectral signatures with two bands between 2.2 and 2.3 µm at one stratigraphic horizon. Based on comparisons with terrestrial sites, the spectral "doublet" unit described here may reflect the remnants of a salty, evaporative period that existed on Mars during the transition from formation of Fe-rich phyllosilicates to Al-rich phyllosilicates. Layered outcrops observed at Mawrth Vallis are thicker than in other altered regions of Mars, but may represent processes that were more widespread in wet regions of the planet during its early history. The aqueous geochemical environments supporting the outcrops observed here include: (i) the formation of Fe3+-rich smectites in a warm and wet environment, (ii) overlain by a thin ferrous-bearing clay unit that could be associated with heating or reducing conditions, (iii) followed by a transition to salty and/or acidic alteration phases and sulfates (characterized by the spectral "doublet" shape) in an evaporative setting, (iv) formation of Al-rich phyllosilicates through pedogenesis or acid leaching, and (v) finally persistence of poorly crystalline aluminosilicates marking the end of the warm climate on early Mars. The "doublet" type units described here are likely composed of clay-sulfate assemblages formed in saline, acidic evaporative environments similar to those found in Western Australia and the Atacama desert. Despite the chemically extreme and variable waters present at these terrestrial, saline lake environments, active ecosystems are present; thus, these "doublet" type units may mark exciting areas for continued exploration important to astrobiology on Mars.

8.
Nat Astron ; 2: 260-213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32042926

RESUMO

The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

9.
Dev Clay Sci ; 8: 482-514, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-34045934

RESUMO

Spectral remote sensing in the visible/near-infrared (VNIR) and mid-IR (MIR) regions has enabled detection and characterisation of multiple clays and clay minerals on Earth and in the Solar System. Remote sensing on Earth poses the greatest challenge due to atmospheric absorptions that interfere with detection of surface minerals. Still, a greater variety of clay minerals have been observed on Earth than other bodies due to extensive aqueous alteration on our planet. Clay minerals have arguably been mapped in more detail on the planet Mars because they are not masked by vegetation on that planet and the atmosphere is less of a hindrance. Fe/Mg-smectite is the most abundant clay mineral on the surface of Mars and is also common in meteorites and comets where clay minerals are detected.

10.
Philos Trans A Math Phys Eng Sci ; 372(2030)2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25368345

RESUMO

Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars.

11.
Astrobiology ; 10(7): 687-703, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20950170

RESUMO

The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 106 km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.


Assuntos
Marte , Radiação Cósmica , Evolução Planetária , Exobiologia , Geografia , Sedimentos Geológicos , Fenômenos Geológicos , Silicatos/química , Solo , Voo Espacial , Astronave , Estados Unidos , United States National Aeronautics and Space Administration
12.
Astrobiology ; 9(3): 257-67, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19400732

RESUMO

Minerals and their occurrences can tell us about the chemistry, pressure, and temperatures of past environments on Mars and thus allow inferences about the potential for habitability. Thanks to recent space exploration, a new vision is emerging wherein Mars hosted environmental conditions of potential astrobiological relevance. This epoch is identified by the presence of phyllosilicate-bearing deposits, which are generally contained in very ancient basement rocks. In October 2008, over 100 planetary scientists representing 11 countries met in Paris to assess and discuss the relevance of martian phyllosilicates. The conference was structured to promote the discussion and debate of key scientific questions and key essential investigations. The purpose of this report is to document the current state of knowledge related to martian phyllosilicates and to ascertain which questions remain to be addressed: What are the basic characteristics of the phyllosilicate minerals on Mars? What are the genetic mechanisms by which phyllosilicate minerals have formed on Mars? What is the relationship between the phyllosilicate minerals observed in martian meteorites and those detected from orbit? What are the implications of phyllosilicate-bearing rocks for the development of prebiotic chemistry and the preservation of biosignatures? The most promising investigations to address these questions are presented.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Marte , Meteoroides , Minerais/química
13.
Science ; 322(5909): 1828-32, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19095939

RESUMO

Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.


Assuntos
Magnésio , Marte , Água , Meio Ambiente Extraterreno , Compostos de Ferro , Compostos de Magnésio , Silicatos , Astronave , Análise Espectral , Temperatura
14.
Science ; 321(5890): 830-3, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18687963

RESUMO

Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)-smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry. A spectral feature attributed to an Fe2+ phase is present in many locations in the Mawrth Vallis region at the transition from Fe/Mg-smectite to aluminum/silicon (Al/Si)-rich units. Fe2+-bearing materials in terrestrial sediments are typically associated with microorganisms or changes in pH or cations and could be explained here by hydrothermal activity. The stratigraphy of Fe/Mg-smectite overlain by a ferrous phase, hydrated silica, and then Al-phyllosilicates implies a complex aqueous history.


Assuntos
Marte , Silicatos/análise , Água , Meio Ambiente Extraterreno , Ferro/análise , Magnésio/análise , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA