Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2304685120, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669384

RESUMO

Microrobot swarms have seen increased interest in recent years due to their potentials for in vivo delivery and imaging with cooperative propulsion modes and enhanced imaging signals. Yet most swarms developed so far are limited to dense particle aggregates, far simpler than complicated three-dimensional assemblies of anisotropic particles. Here, we show via assembly path design that complex hollow tubular structures can be assembled from simple isotropic colloidal spheres and those complicated, metastable, microtubes can be formed from simple, energetically favorable colloidal membranes. The assembled microtubes can remain intact and roll under a precessing magnetic field, with propulsion directions and velocities precisely controlled by field components. The hollow spaces inside enable these tubular microrobots to grab, transport, and release cargos on command. We also demonstrate unique compressing and uncompressing capabilities with our tubular microrobots, making them effective microtweezers. Our work shows that complicated microrobots can be transformed from simple assemblies, providing an insight on building micromachines.

2.
Chem Rev ; 122(5): 4887-4926, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34941251

RESUMO

Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Ácidos Nucleicos , Materiais Inteligentes , Cristais Líquidos/química , Proteínas
3.
Small ; 19(8): e2204609, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36420923

RESUMO

Magnetic fluids have advantages such as flow ability and solid-like property in strong magnetic fields, but have to suffer from the tradeoff between suspension stability and flow resistance. In this work, a thermal/photo/magnetorheological water-based magnetic fluid is fabricated by using oleic acid-coated Fe3 O4 (Fe3 O4 @OA) nanoparticles as the magnetic particles and the amphiphilic penta block copolymer (PTMC-F127-PTMC)-based aqueous solution as the carrier fluid. Due to the hydrophobic self-assembly between Fe3 O4 @OA and PTMC-F127-PTMC, the Newtonian-like magnetic fluid has outstanding long-term stability and reversible rheological changes between the low-viscosity flow state and the 3D gel structure. In the linear viscoelastic region, the viscosity exhibits an abrupt increase from below 0.10 Pa s at 20 °C to ≈1.3 × 104  Pa s at 40 °C. Benefitting from the photothermal and magnetocaloric effects of the Fe3 O4 @OA nanoparticles, the rheological change process also can be controlled by near infrared light and alternating magnetic field, which endows the magnetic fluid with the applications in the fields of mobile valves, moveable switches, buffer or damping materials in sealed devices, etc.

4.
Small ; 19(1): e2205440, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36285777

RESUMO

Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia-responsive photosensitizer, TPA-Azo. Introducing the azo group into the photosensitizer TPA-BN with aggregation-induced emission quenches its fluorescence. When the nonfluorescent TPA-Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA-BN with an amino group that exhibits fluorescence-activatable image-guided photodynamic therapy with dual-organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence-activatable photosensitizers.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Hipóxia , Organelas
5.
Small ; 18(42): e2204360, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36135778

RESUMO

Dynamic sequential control of photoluminescence by supramolecular approaches has become a great issue in supramolecular chemistry. However, developing a systematic strategy to construct polychromatic photoluminescent supramolecular self-assemblies for improving the efficiency and sensitivity of artificial light-harvesting systems still remains a challenge. Here, a series of amphiphilicity-controlled supramolecular self-assemblies with polychromatic fluorescence based on lower-rim hexyl-modified sulfonatocalix[4]arene (SC4A6) and N-alkyl-modified p-phenylene divinylpyridiniums (PVPn, n = 2-7) as efficient light-harvesting platforms is reported. PVPn shows wide ranges of polychromatic fluorescence by co-assembling with SC4A6, whose emission trends significantly depend on the modified alkyl-chains of PVPn. The formed PVPn-SC4A6 co-assemblies as light-harvesting platforms are extremely sensitive for transferring the energy to two near-infrared emissive acceptors, Nile blue (NiB) and Rhodamine 800. After optimizing the amphiphilicity of PVPn-SC4A6 systems, the PVPn-SC4A6-NiB light-harvesting systems achieve an ultrasensitive working concentration for NiB (2 nm) and an ultrahigh antenna effect up to 91.0. Furthermore, the two different kinds of light-harvesting nanoparticles exhibit good performance on near-infrared imaging in the Golgi apparatus and mitochondria, respectively.


Assuntos
Nanopartículas , Nanopartículas/química
6.
Chemistry ; 28(18): e202103906, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-34964995

RESUMO

Inspired by human vision, a diverse range of light-driven molecular switches and motors have been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc. The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.


Assuntos
Raios Ultravioleta , Humanos
7.
Nature ; 531(7594): 352-6, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26950601

RESUMO

Chiral nematic liquid crystals--otherwise referred to as cholesteric liquid crystals (CLCs)--are self-organized helical superstructures that find practical application in, for example, thermography, reflective displays, tuneable colour filters and mirrorless lasing. Dynamic, remote and three-dimensional control over the helical axis of CLCs is desirable, but challenging. For example, the orientation of the helical axis relative to the substrate can be changed from perpendicular to parallel by applying an alternating-current electric field, by changing the anchoring conditions of the substrate, or by altering the topography of the substrate's surface; separately, in-plane rotation of the helical axis parallel to the substrate can be driven by a direct-current field. Here we report three-dimensional manipulation of the helical axis of a CLC, together with inversion of its handedness, achieved solely with a light stimulus. We use this technique to carry out light-activated, wide-area, reversible two-dimensional beam steering--previously accomplished using complex integrated systems and optical phased arrays. During the three-dimensional manipulation by light, the helical axis undergoes, in sequence, a reversible transition from perpendicular to parallel, followed by in-plane rotation on the substrate surface. Such reversible manipulation depends on experimental parameters such as cell thickness, surface anchoring condition, and pitch length. Because there is no thermal relaxation, the system can be driven either forwards or backwards from any light-activated intermediate state. We also describe reversible photocontrol between a two-dimensional diffraction state, a one-dimensional diffraction state and a diffraction 'off' state in a bilayer cell.

8.
Angew Chem Int Ed Engl ; 61(8): e202115755, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34904346

RESUMO

In nature, many mysterious creatures capable of deformation camouflage, color camouflage, and self-healing have inspired scientists to develop various biomimetic soft robots. However, the systematic integration of all the above functionalities into a single soft actuator system still remains a challenge. Here we chemically introduce a multi-stimuli-responsive tetraarylsuccinonitrile (TASN) chromophore into a liquid crystal elastomer (LCE) network through a facile thiol-ene photoaddition method. The obtained TASN-LCE soft actuators not only exhibit reversible shape-morphing and reversible color-changing behavior in response to heat and mechanical compression, but also show excellent self-healing, reprogramming and recycling characteristics. We hope that such a TASN-LCE actuator system endowed with dynamic distortion, thermo- and mechano-chromic camouflage, and self-healing functionalities would pave the way for further development of multifunctional biomimetic soft robotic devices.

9.
Angew Chem Int Ed Engl ; 61(16): e202200466, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35100478

RESUMO

The development of controllable artificial light-harvesting systems based on liquid crystal (LC) materials, i.e., anisotropic fluids, remains a challenge. Herein, an annulene-based discotic LC compound 6 with a saddle-shaped cyclooctatetrathiophene core has been synthesized to construct a tunable light-harvesting platform. The LC material shows a typical aggregation-induced emission, which can act as a suitable light-harvesting donor. By loading Nile red (NiR) as an acceptor, an artificial light-harvesting system is achieved. Relying on the thermal-responsive self-assembling ability of 6 with variable molecular order, the efficiency of such 6-NiR system can be controlled by temperature. This light-harvesting system works sensitively at a high donor/acceptor ratio as 1000 : 1, and exhibits a high antenna effect (39.1) at a 100 : 1 donor/acceptor ratio. This thermochromic artificial light-harvesting LC system could find potential applications in smart devices employing soft materials.

10.
Langmuir ; 37(13): 3789-3807, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775094

RESUMO

The quest for interesting properties and phenomena in liquid crystals toward their employment in nondisplay application is an intense and vibrant endeavor. Remarkable progress has recently been achieved with regard to liquid crystals in curved confined geometries, typically represented as enclosed spherical geometries and cylindrical geometries with an infinitely extended axial-symmetrical space. Liquid-crystal emulsion droplets and fibers are intriguing examples from these fields and have attracted considerable attention. It is especially noteworthy that the rapid development of microfluidics brings about new capabilities to generate complex soft microstructures composed of both thermotropic and lyotropic liquid crystals. This review attempts to outline the recent developments related to the liquid crystals in curved confined geometries by focusing on microfluidics-mediated approaches. We highlight a wealth of novel photonic applications and beyond and also offer perspectives on the challenges, opportunities, and new directions for future development in this emerging research area.

11.
Angew Chem Int Ed Engl ; 60(30): 16394-16398, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33977661

RESUMO

Based on liquid crystal elastomer (LCE) materials, hierarchically structured soft actuators can meet some requirements for "human-friendly" working mode and execute complex tasks with intelligent adaptation to environmental changes. However, few researchers have paid much attention to the preparation methods of multicomponent/hierarchical LCE actuators. In this communication, we demonstrate the successful integration of an exchangeable diselenide chain extender for the preparation of dynamic LCEs, which could be reprogrammed on heating or under visible light illumination. Moreover, the rearrangeable polydiselenide networks could be applied to develop the self-welding technology toward fabricating hierarchically structured LCE actuators with sophisticated deformability without using any auxiliary reagent (adhesive, tape, catalysts or initiator) during the assembling process.

12.
Angew Chem Int Ed Engl ; 60(52): 27158-27163, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34549501

RESUMO

Two light-driven chiral fluorescent molecular switches, (R,S,R)-switch 1 and (R,S,R)-switch 2, are prepared by means of hydrogen-bonded (H-bonded) assembly of a photoresponsive (S) chiral fluorescent molecule, respectively with a cyano substitution at different positions as an H-bond acceptor and an opposite (R) chiral molecule as an H-bond donor. The resulting two switches exhibit tunable and reversible Z/E photoisomerization irradiated with 450 nm blue and 365 nm UV light. When doped into an achiral liquid crystal, both switches are found to be able to form a CPL tunable luminescent helical superstructure. In contrast to the tunable CPL characteristics of the system incorporating switch 2, exposure of the system incorporating switch 1 to 365 nm and 450 nm radiation can lead to controllable different photostationary CPL behavior, including switching-off and polarization inversion. In addition, optical information coding is demonstrated using the system containing switch 1.

13.
Angew Chem Int Ed Engl ; 60(20): 11247-11251, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33655581

RESUMO

Bioinspired smart materials with synergistic allochroic luminescence and complex deformation are expected to play an important role in many areas of science and technology. However, it is still challenging to fabricate such soft actuators with high programmability that can be manipulated in situ with high spatial resolution. Herein, we have incorporated terminally functionalized aggregation-induced emission active tetraphenylethene derivative and photochromic spiropyran moieties into the networks of liquid crystal elastomers through covalent bonding to obtain the synergistic photochromic luminescence and programmable soft actuators. Bio-mimic functions and light-induced auxetic metamaterial-like devices were shown to be feasible based on the combination of assembly and origami-programming strategy. These bioinspired devices with synergistic photochromic luminescence and complex photodeformation abilities provide an elegant strategy to design multi-functional liquid crystal actuators.

14.
Angew Chem Int Ed Engl ; 60(7): 3390-3396, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33259120

RESUMO

Herein, we report near-infrared (NIR) light-driven shape-morphing of programmable MXene-containing anisotropic hydrogel actuators that are fabricated through in situ free-radical copolymerization of a judiciously designed MXene nanomonomer with thermosensitive hydrogel network. A low electric field (few V mm-1 ) was found to enable a spatial distribution of MXene nanosheets and hence introduce anisotropy into the hydrogel network. Programmable anisotropic hydrogel actuators were developed by controlling ITO electrode pattern, direct-current (DC) electric field direction and mask-assisted photopolymerization. As a proof-of-concept, we demonstrate NIR light-driven shape morphing of the MXene-containing anisotropic hydrogel into various shapes and devise a four-arm soft gripper that can perform distinct photomechanical functions such as grasping, lifting/lowering down and releasing an object upon sequential NIR light exposure.

15.
Angew Chem Int Ed Engl ; 59(26): 10493-10497, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32196893

RESUMO

Light-harvesting systems are an important way for capturing, transferring and utilizing light energy. It remains a key challenge to develop highly efficient artificial light-harvesting systems. Herein, we report a supramolecular co-assembly based on lower-rim dodecyl-modified sulfonatocalix[4]arene (SC4AD) and naphthyl-1,8-diphenyl pyridinium derivative (NPS) as a light-harvesting platform. NPS as a donor shows significant aggregation induced emission enhancement (AIEE) after assembling with SC4AD. Upon introduction of Nile blue (NiB) as an acceptor into the NPS-SC4AD co-assembly, the light-harvesting system becomes near-infrared (NIR) emissive (675 nm). Importantly, the NIR emitting NPS-SC4AD-NiB system exhibits an ultrahigh antenna effect (33.1) at a high donor/acceptor ratio (250:1). By co-staining PC-3 cells with a Golgi staining reagent, NBD C6 -ceramide, NIR imaging in the Golgi apparatus has been demonstrated using these NIR emissive nanoparticles.


Assuntos
Calixarenos/química , Corantes Fluorescentes/química , Complexo de Golgi/metabolismo , Compostos de Piridínio/química , Calixarenos/efeitos da radiação , Calixarenos/toxicidade , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Humanos , Raios Infravermelhos , Microscopia Confocal , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/efeitos da radiação , Nanopartículas/toxicidade , Oxazinas/química , Oxazinas/efeitos da radiação , Oxazinas/toxicidade , Células PC-3 , Compostos de Piridínio/efeitos da radiação , Compostos de Piridínio/toxicidade
16.
Angew Chem Int Ed Engl ; 59(7): 2684-2687, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31802595

RESUMO

Visible-light-driven molecular switches endowing reversible modulation of the functionalities of self-organized soft materials are currently highly sought after for fundamental scientific studies and technological applications. Reported herein are the design and synthesis of two novel halogen bond donor based chiral molecular switches that exhibit reversible photoisomerization upon exposure to visible light of different wavelengths. These chiral molecular switches induce photoresponsive helical superstructures, that is, cholesteric liquid crystals, when doped into the commercially available room-temperature achiral liquid crystal host 5CB, which also acts as a halogen-bond acceptor. The induced helical superstructure containing the molecular switch with terminal iodo atoms exhibits visible-light-driven reversible unwinding, that is, a cholesteric-nematic phase transition. Interestingly, the molecular switch with terminal bromo atoms confers reversible handedness inversion to the helical superstructure upon irradiation with visible light of different wavelengths. This visible-light-driven, reversible handedness inversion, enabled by a halogen bond donor molecular switch, is unprecedented.

17.
J Am Chem Soc ; 141(20): 8078-8082, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31050406

RESUMO

Development of light-driven functional materials capable of displaying reversible properties is currently a vibrant frontier from both scientific and technological points of view. Here a new visible-light-driven chiral molecular switch is synthesized and characterized. To the best of our knowledge, this is the first example of a chiral molecular switch in which the visible-light-driven azobenzene motif is directly linked to an axially chiral scaffold through a C-C bond. The chiral molecular switch exhibits trans-to- cis photoisomerization upon 530 nm irradiation and cis-to- trans isomerization upon 450 nm irradiation. The switch can thus be photoisomerized in both directions using visible light of different wavelengths, a promising attribute for device applications. It was found that this relatively rigid molecular switch exhibited a high helical twisting power (HTP) in liquid crystal hosts and a large change of HTP value upon photoisomerization. We achieved dynamic reflection tuning across the visible spectrum through incorporation into a self-organized helical superstructure, i.e., a cholesteric liquid crystal. We also demonstrated patterned photodisplays reflecting red, green, and blue circularly polarized light using these cholesteric films. Phototunable color displays were fabricated by selective light irradiation where the information can be reversibly hidden by applying an electric field and restored by applying either a mechanical force or an electric field of higher voltage.

18.
Chemistry ; 25(6): 1369-1378, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30076632

RESUMO

Owing to their dynamic attributes, non-covalent supramolecular interactions have enabled a new paradigm in the design and fabrication of multifunctional material systems with programmable properties, performances, and reconfigurable traits. Recently, the "halogen bond" has become an enticing supramolecular synthetic tool that displays a plethora of promising and advantageous characteristics. Consequently, this versatile and dynamic non-covalent interaction has been extensively harnessed in various fields such as crystal engineering, self-assembly, materials science, polymer chemistry, biochemistry, medicinal chemistry and nanotechnology. In recent years, halogen bonding has emerged as a tunable supramolecular synthetic tool in the design of functional liquid-crystalline materials with adjustable phases and properties. In this Concept article, the use of halogen bond in the field of stimuli-responsive smart soft materials, that is, liquid crystals is discussed. The design, synthesis and characterization of molecular and macromolecular liquid crystalline materials are described and the modulation of their properties has been emphasized. The power of halogen bonding in offering a large variety of functional liquid crystalline materials from readily accessible mesomorphic and non-mesomorphic complementary building blocks is highlighted. The article concludes with a perspective on the challenges and opportunities in this emerging endeavor towards the realization of enabling and elegant dynamic functional materials.

19.
Angew Chem Int Ed Engl ; 58(45): 16052-16056, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487106

RESUMO

Reported here is the first example of a 1,2-dithienyldicyanoethene-based visible-light-driven chiral fluorescent molecular switch that exhibits reversible trans to cis photoisomerization. The trans form in solution almost completely transforms into the cis form, accompanied by a 10-fold decrease in its fluorescence intensity within 60 seconds when exposed to green light (520 nm). The reverse isomerization proceeds upon irradiation with blue light (405 nm). When doped into commercially available achiral liquid crystal hosts, this molecular switch efficiently induces luminescent helical superstructures, that is, a cholesteric phase. The intensity of the circularly polarized fluorescence as well as the selective reflection wavelength of the induced cholesteric phases can be reversibly tuned using visible light of two different wavelengths. Optically rewritable photonic devices using cholesteric films containing this molecular switch are described.

20.
Chem Rev ; 116(24): 15089-15166, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27936632

RESUMO

Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photochromism, liquid crystallinity, and fabrication techniques has enabled some fascinating functional materials which can be driven by ultraviolet, visible, and infrared light irradiation. Nanoscale particles have been incorporated to widen and diversify the scope of the light-driven liquid crystalline materials. The developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc. The challenges and opportunities in this area are discussed at the end of the Review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA