Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 241(0): 266-277, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134559

RESUMO

Tuning solubility and mechanical activation alters the stereoselectivity of the [2 + 2] photochemical cycloaddition of acenaphthylene. Photomechanochemical conditions produce the syn cyclobutane, whereas the solid-state reaction in the absence of mechanical activation provides the anti. When the photochemical dimerization occurs in a solubilizing organic solvent, there is no selectivity. Dimerization in H2O, in which acenaphthylene is insoluble, provides the anti product. DFT calculations reveal that insoluble and solid-state reactions proceed via a covalently bonded excimer, which drives anti selectivity. Alternatively, the noncovalently bound syn conformer is more mechanosusceptible than the anti, meaning it experiences greater destabilization, thereby producing the syn product under photomechanochemical conditions. Cyclobutanes are important components of biologically active natural products and organic materials, and we demonstrate stereoselective methods for obtaining syn or anti cyclobutanes under mild conditions and without organic solvents. With this work, we validate photomechanochemistry as a viable new direction for the preparation of complex organic scaffolds.


Assuntos
Acenaftenos , Ciclobutanos , Teoria da Densidade Funcional , Dimerização
2.
Chem Sci ; 11(22): 5836, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34106096

RESUMO

[This corrects the article DOI: 10.1039/C9SC06481H.].

3.
Chem Commun (Camb) ; 56(30): 4204-4207, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32167510

RESUMO

We use microcrystal electron diffraction (MicroED) to determine structures of three organic semiconductors, and show that these structures can be used along with grazing-incidence wide-angle X-ray scattering (GIWAXS) to understand crystal packing and orientation in thin films. Together these complimentary techniques provide unique structural insights into organic semiconductor thin films, a class of materials whose device properties and electronic behavior are sensitively dependent on solid-state order.

4.
Nanoscale Adv ; 1(10): 3858-3869, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132107

RESUMO

Organic semiconductors have received substantial attention as active components in optoelectronic devices because of their processability and customizable properties. Tailoring the organic active layer in these devices to exhibit the desired optoelectronic properties requires understanding the complex and often subtle structure-property relationships governing their photophysical response to light. Both structural organization and molecular orbitals play pivotal roles, and their interactions with each other are difficult to anticipate based upon the structure of the components alone, especially in systems comprised of multiple components. In pursuit of design rules, there is a need to explore multicomponent systems combinatorially to access larger data sets, and supramolecularly to use error correcting, noncovalent assembly to achieve long-range order. This review will focus on the use of supramolecular chemistry to study combinatorial, hierarchical organic systems with emergent optoelectronic properties. Specifically, we will describe systems that undergo excited state deactivation by charge transfer (CT), singlet fission (SF), and Förster resonance energy transfer (FRET). Adopting combinatorial, supramolecular assembly to study emergent photophysics promises to rapidly accelerate progress in this research field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA