Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Cancer ; 22(1): 1282, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476410

RESUMO

Breast cancer is a complex disease exhibiting a great degree of heterogeneity due to different molecular subtypes. Notch signaling regulates the differentiation of breast epithelial cells during normal development and plays a crucial role in breast cancer progression through the abnormal expression of the Notch up-and down-stream effectors. To date, there are only a few patient-centered clinical studies using datasets characterizing the role of Notch signaling pathway regulators in breast cancer; thus, we investigate the role and functionality of these factors in different subtypes using publicly available databases containing records from large studies. High-throughput genomic data and clinical information extracted from TCGA were analyzed. We performed Kaplan-Meier survival and differential gene expression analyses using the HALLMARK_NOTCH_SIGNALING gene set. To determine if epigenetic regulation of the Notch regulators contributes to their expression, we analyzed methylation levels of these factors using the TCGA HumanMethylation450 Array data. Notch receptors and ligands expression is generally associated with the tumor subtype, grade, and stage. Furthermore, we showed gene expression levels of most Notch factors were associated with DNA methylation rate. Modulating the expression levels of Notch receptors and effectors can be a potential therapeutic approach for breast cancer. As we outline herein, elucidating the novel prognostic and regulatory roles of Notch implicate this pathway as an essential mediator controlling breast cancer progression.


Assuntos
Neoplasias da Mama , Transcriptoma , Humanos , Feminino , Prognóstico , Neoplasias da Mama/genética , Epigênese Genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Receptores Notch/genética
2.
J Cell Physiol ; 236(9): 6200-6224, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559213

RESUMO

Posttranscriptional regulation is a mechanism for the cells to control gene regulation at the RNA level. In this process, RNA-binding proteins (RBPs) play central roles and orchestrate the function of RNA molecules in multiple steps. Accumulating evidence has shown that the aberrant regulation of RBPs makes  contributions to the initiation and progression of tumorigenesis via numerous mechanisms such as genetic changes, epigenetic alterations, and noncoding RNA-mediated regulations. In this article, we review the effects caused by RBPs and their functional diversity in the malignant transformation of cancer cells that occurs through the involvement of these proteins in various stages of RNA regulation including alternative splicing, stability, polyadenylation, localization, and translation. Besides this, we review the various interactions between RBPs and other crucial posttranscriptional regulators such as microRNAs and long noncoding RNAs in the pathogenesis of cancer. Finally, we discuss the potential approaches for targeting RBPs in human cancers.


Assuntos
Carcinogênese/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Processamento Alternativo/genética , Humanos , Neoplasias/patologia , Neoplasias/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Mol Biol Rep ; 47(9): 7229-7251, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32789576

RESUMO

Lung cancer (LC) is among the leading causes of death all over the world and it is often diagnosed at advanced or metastatic stages. Exosomes, derived from circulating vesicles that are released from the multivesicular body, can be utilized for diagnosis and also the prognosis of LC at early stages. Exosomal proteins, RNAs, and DNAs can help to better discern the prognostic and diagnostic features of LC. To our knowledge, there are various reviews on LC and the contribution of exosomes, but none of them are about the exome techniques and also their efficiency in LC. To fill this gap, in this review, we summarize the recent investigations regarding isolation and also the characterization of exosomes of LC cells. Furthermore, we discuss the noncoding RNAs as biomarkers and their applications in the diagnosis and prognosis of LC. Finally, we compare the efficacy of exosome isolation methods to better fi + 6 + guring out feasible techniques.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , DNA Tumoral Circulante , Exossomos/metabolismo , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/isolamento & purificação , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/isolamento & purificação , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/isolamento & purificação , Exossomos/patologia , Humanos , Neoplasias Pulmonares/patologia
4.
J Clin Lab Anal ; 34(2): e23063, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31595567

RESUMO

BACKGROUND: Breast cancer (BC) is the most common malignancy among females with dismal quality of life in patients. It has been proven that epigenetic factors, especially microRNAs, are involved in breast carcinogenesis and progression. This study aimed to assess the expression and clinical performances of a five-microRNA signature (miR-127-3p, miR-133a-3p, miR-155-5p, miR-199b-5p, and miR-342-5p) in breast cancer and adjacent normal tissues to identify a potential biomarker for BC and investigate the relationship between their expression and clinicopathological features of BC patients as well. METHODS: In this case-control investigation, we recruited 50 pairs of tumor and matched non-tumor surgical specimens from patients diagnosed with BC. Expression levels of miR-127-3p, miR-133a-3p, miR-155-5p, miR-199b-5p, and miR-342-5p were measured in BC and adjacent normal tissues by RT-qPCR. RESULTS: We found that miR-127-3p, miR-133a-3p, miR-199b-5p, and miR-342-5p were significantly down-regulated, while miR-155-5p was significantly up-regulated in BC tumor tissues compared with the corresponding adjacent normal tissues. The decreased expression of miR-127-3p, miR-133a-3p, miR-342-5p, and up-regulation of miR-155-5p showed a significant correlation with disease stage. We also found a significant down-regulation of miR-127-3p, miR-199b-5p, and miR-342-5p compared in HER-2-negative patients. Our results indicated that miR-155-5p had a higher expression level in HER-2-positive patients. Receiver operating characteristic (ROC) curve analysis demonstrated that all these five microRNAs can serve as potential biomarkers to distinguish between tumor and non-tumor breast tissue samples. CONCLUSIONS: The present findings suggested that dysregulation of this five-miRNA signature might be considered as a promising and functional biomarker for BC diagnosis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/genética , Neoplasias da Mama/cirurgia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Receptor ErbB-2/genética
5.
Cell Mol Biol (Noisy-le-grand) ; 65(6): 12-16, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31472042

RESUMO

Reelin is a large extracellular glycoprotein secreted by Cajal-Retzius cells and has a main role during brain development, especially in neuronal migration. Reelin is comprised of N-terminal F-Spondin like domain, eight tandem repeats, and a highly conserved basic C-Terminal Region (CTR). The CTR main role in the secretion of Reelin has been investigated by advertently inducing deletion in whole or a part of this region; however, the role of CTR point mutations on the secretion of Reelin is shrouded in mystery. In this study, we performed experimental analyses on a sub-region of Human Reelin containing 5th and 6th repeats (R5-R6), a part of 8th repeat and the CTR which were amplified from cDNA of K562 and HEPG2(HepatocellularG2) cells and cloned into a mammalian expressional plasmid (pVP22/myc-His). Bioinformatics investigation was performed on the CTR at both level of nucleotide and amino acid as well as mutant type. Random mutagenesis by error-prone PCR method was utilized to induce mutation in the CTR. The secretion efficiency of recombinant wild-type and mutant Reelin constructs compared in cell lysate and supernatant isolated from the transiently transfected HEK 293T cells using 6XHistag ELISA method. In-vitro study demonstrated that the CTR alteration (S3440P) leads to impairment of Reelin secretion even after overexpression. Our results indicate that S3440P substitution is the highly conserved structure of the CTR has an important effect on Reelin secretion.


Assuntos
Substituição de Aminoácidos , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Serina Endopeptidases/química , Serina Endopeptidases/genética , Sequência de Aminoácidos , Sequência Conservada , Evolução Molecular , Células HEK293 , Humanos , Mutação/genética , Proteína Reelina
6.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514268

RESUMO

In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.


Assuntos
Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , RNA não Traduzido/genética , Animais , Condrócitos/citologia , Condrócitos/metabolismo , Epigênese Genética , Lâmina de Crescimento/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido/metabolismo
7.
Front Immunol ; 15: 1353570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646527

RESUMO

Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.


Assuntos
Células Dendríticas , Fucose , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Camundongos , Fucose/metabolismo , Apresentação de Antígeno , Feminino , Camundongos Endogâmicos C57BL , Polaridade Celular , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Melanoma Experimental/imunologia , Ativação Linfocitária/imunologia
8.
medRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37904926

RESUMO

Background: Currently there are no biomarkers to identify resistance to androgen-deprivation therapy (ADT) in men with hormone-naive prostate cancer. 5-hydroxymethylcytosines (5hmC) in the gene body are associated with gene activation and are critical for epigenomic regulation of cancer progression. Objective: To evaluate whether 5hmC signature in cell-free DNA (cfDNA) predicts early ADT resistance. Design Setting and Participants: Serial plasma samples from 55 prostate cancer patients receiving ADT were collected at three timepoints including baseline (prior to initiating ADT, N=55), 3-month (after initiating ADT, N=55), and disease progression (N=15) within 24 months or 24-month if no progression was detected (N=14). 20 of the 55 patients showed disease progression during the 24-month follow-up. The remaining 35 patients showed no progression in the same follow-up period. Outcome Measurements and Statistical Analysis: cfDNA (5-10ng) was used for selective chemical labeling (hMe-Seal) sequencing to map 5hmC abundance across the genome. Read counts in gene bodies were normalized with DESeq2. Differential methylation and gene set enrichment analyses were performed to identify the 5hmC-enriched genes and biological processes that were associated with disease progression. Kaplan-Meir analysis was utilized to determine the association of 5hmC signatures with progression-free survival. Results and Limitations: 5hmC-sequencing generated an average of 18.6 (range 6.03 to 42.43) million reads per sample with 98% (95-99%) mappable rate. Baseline sample comparisons identified significant 5hmC difference in 1,642 of 23,433 genes between 20 patients with progression and 35 patients without progression (false discovery rate, FDR<0.1). Patients with progression showed significant enrichments in multiple hallmark gene sets with androgen responses as the top enriched gene set (FDR=1.19E-13). Interestingly, this enrichment was driven by a subgroup of patients with disease progression featuring a significant 5hmC hypermethylation of the gene sets involving AR, FOXA1 and GRHL2. To quantify overall activities of these gene sets, we developed a gene set activity score algorithm using a mean value of log2 ratios of gene read counts in an entire gene set. We found that the activity scores in these gene sets were significantly higher in this subgroup of patients with progression than in the remaining patients regardless of the progression status. Furthermore, the high activity scores in these gene sets were associated with poor progression-free survival (p <0.05). Longitudinal analysis showed that activity scores in this subgroup with progression were significantly reduced after 3-month ADT but returned to high levels when the disease was progressed. Conclusions: 5hmC-sequencing in cfDNA identified a subgroup of prostate cancer patients with preexisting activation (5hmC hypermethylation) of gene sets involving AR, FOXA1 and GRHL2 before initiating ADT. Activity scores in these gene sets may serve as sensitive biomarkers to determine treatment resistance, monitor disease progression and potentially identify patients who would benefit from upfront treatment intensification. More studies are needed to validate this initial finding. Patient summary: There are no clinical tests to identify prostate cancer patients who will develop early resistance to androgen deprivation therapy within 24 months. In this study, we evaluated cell-free DNA epigenomic modification in blood and identified significant enrichment of 5-hydroxymethylation in androgen response genes in a subgroup of patients with treatment resistance. High level 5-hydroxylmethylation in these genes may serve as a discriminative biomarker to diagnose patients who are likely to experience early failure during androgen deprivation therapy.

9.
Pathol Res Pract ; 243: 154341, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739754

RESUMO

Breast cancer is the most frequently diagnosed malignant tumor in women and a major public health concern. NRF2 axis is a cellular protector signaling pathway protecting both normal and cancer cells from oxidative damage. NRF2 is a transcription factor that binds to the gene promoters containing antioxidant response element-like sequences. In this report, differential expression of NRF2 signaling pathway elements, as well as the correlation of NRF2 pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade, tumor stage, and methylation status, has been investigated in breast cancer using METABRIC and TCGA datasets. In the current report, our findings revealed the deregulation of several NRF2 signaling elements in breast cancer patients. Moreover, there were negative correlations between the methylation of NRF2 genes and mRNA expression. The expression of NRF2 genes significantly varied between different breast cancer subtypes. In conclusion, substantial deregulation of NRF2 signaling components suggests an important role of these genes in breast cancer. Because of the clear associations between mRNA expression and methylation status, DNA methylation could be one of the mechanisms that regulate the NRF2 pathway in breast cancer. Differential expression of Hippo genes among various breast cancer molecular subtypes suggests that NRF2 signaling may function differently in different subtypes of breast cancer. Our data also highlights an interesting link between NRF2 components' transcription and tumor grade/stage in breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Prognóstico , Transcriptoma , Transdução de Sinais/genética , RNA Mensageiro/genética
10.
Life Sci ; 309: 120975, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126723

RESUMO

AIMS: Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS: We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS: We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE: We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Humanos , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/diagnóstico , Transdução de Sinais/genética , Carcinogênese , Mamíferos/genética , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA