Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 60(39): 2943-2955, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34547893

RESUMO

The increasing number of resistant bacteria is a major threat worldwide, leading to the search for new antibiotic agents. One of the leading strategies is the use of antimicrobial peptides (AMPs), cationic and hydrophobic innate immune defense peptides. A major target of AMPs is the bacterial membrane. Notably, accumulating data suggest that AMPs can activate the two-component systems (TCSs) of Gram-negative bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible for remodeling of the bacterial cell surface. To better understand this mechanism, we utilized bacteria deficient either in one system alone or in both and biophysical tools including fluorescence spectroscopy, single-cell atomic force microscopy, electron microscopy, and mass spectrometry (Moskowitz, S. M.; Antimicrob. Agents Chemother. 2012, 56, 1019-1030; Cheng, H. Y.; J. Biomed. Sci. 2010, 17, 60). Our data suggested that the two systems have opposing effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs by making the surface less rigid, more polarized, and permeable with a slightly more negatively charged cell wall. In addition, the periplasmic space is thinner. In contrast, the knockout of PmrAB did not affect its susceptibility, while it made the bacterial outer layer very rigid, less polarized, and less permeable than the other two mutants, with a negatively charged cell wall similar to the WT. Overall, the data suggest that the coexistence of systems with opposing effects on the biophysical properties of the bacteria contribute to their membrane flexibility, which, on the one hand, is important to accommodate changing environments and, on the other hand, may inhibit the development of meaningful resistance to AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Infecções por Salmonella/tratamento farmacológico , Salmonella enterica/efeitos dos fármacos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Periplasma/efeitos dos fármacos , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella enterica/isolamento & purificação , Salmonella enterica/metabolismo , Sorogrupo
2.
PLoS Pathog ; 8(9): e1002891, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22969424

RESUMO

Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.


Assuntos
Alanina/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Parede Celular/metabolismo , Resistência Microbiana a Medicamentos , Lipopolissacarídeos/metabolismo , Streptococcus/efeitos dos fármacos , Ácidos Teicoicos/metabolismo , Alanina/farmacologia , Sequência de Aminoácidos , Antibacterianos/farmacologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Concentração Osmolar , Processamento de Proteína Pós-Traducional/fisiologia , Infecções Estreptocócicas/microbiologia , Streptococcus/metabolismo , Streptococcus/ultraestrutura , Propriedades de Superfície , Ácidos Teicoicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA