RESUMO
Wood submerged in saline and oxygenated marine waters worldwide is efficiently degraded by crustaceans and molluscs. Nevertheless, in the cold coastal waters of the Antarctic, these degraders seem to be absent and no evidence of other wood-degrading organisms has been reported so far. Here we examine long-term exposed anthropogenic wood material (Douglas Fir) collected at the seafloor close to McMurdo station, Antarctica. We used light and scanning electron microscopy and demonstrate that two types of specialized lignocellulolytic microbes-soft rot fungi and tunnelling bacteria-are active and degrade wood in this extreme environment. Fungal decay dominates and hyphae penetrate the outer 2-4 mm of the wood surface. Decay rates observed are about two orders of magnitude lower than normal. The fungi and bacteria, as well as their respective cavities and tunnels, are slightly smaller than normal, which might represent an adaptation to the extreme cold environment. Our results establish that there is ongoing wood degradation also in the Antarctic, albeit at a vastly reduced rate compared to warmer environments. Historical shipwrecks resting on the seafloor are most likely still in good condition, although surface details such as wood carvings, tool marks, and paint slowly disintegrate due to microbial decay.
RESUMO
Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9â¯mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.
Assuntos
Eliminação de Resíduos , Madeira , Austrália , Carbono , Metano , Instalações de Eliminação de ResíduosRESUMO
Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16-44years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt current accepted default factors for the decay of wood in landfills greatly overestimate methane emissions.