Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906993

RESUMO

Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.

2.
Nano Lett ; 23(10): 4399-4405, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154560

RESUMO

Transition metal dichalcogenide heterostructures provide a versatile platform to explore electronic and excitonic phases. As the excitation density exceeds the critical Mott density, interlayer excitons are ionized into an electron-hole plasma phase. The transport of the highly non-equilibrium plasma is relevant for high-power optoelectronic devices but has not been carefully investigated previously. Here, we employ spatially resolved pump-probe microscopy to investigate the spatial-temporal dynamics of interlayer excitons and hot-plasma phase in a MoSe2/WSe2 twisted bilayer. At the excitation density of ∼1014 cm-2, well exceeding the Mott density, we find a surprisingly rapid initial expansion of hot plasma to a few microns away from the excitation source within ∼0.2 ps. Microscopic theory reveals that this rapid expansion is mainly driven by Fermi pressure and Coulomb repulsion, while the hot carrier effect has only a minor effect in the plasma phase.

3.
Nano Lett ; 22(19): 7811-7818, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36130299

RESUMO

Achieving superradiance in solids is challenging due to fast dephasing processes from inherent disorder and thermal fluctuations. Perovskite quantum dots (QDs) are an exciting class of exciton emitters with large oscillator strength and high quantum efficiency, making them promising for solid-state superradiance. However, a thorough understanding of the competition between coherence and dephasing from phonon scattering and energetic disorder is currently unavailable. Here, we present an investigation of exciton coherence in perovskite QD solids using temperature-dependent photoluminescence line width and lifetime measurements. Our results demonstrate that excitons are coherently delocalized over 3 QDs at 11 K in superlattices leading to superradiant emission. Scattering from optical phonons leads to the loss of coherence and exciton localization to a single QD at temperatures above 100 K. At low temperatures, static disorder and defects limit exciton coherence. These results highlight the promise and challenge in achieving coherence in perovskite QD solids.

4.
Angew Chem Int Ed Engl ; 62(15): e202301049, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36806415

RESUMO

Chalcogenide perovskites have garnered interest for applications in semiconductor devices due to their excellent predicted optoelectronic properties and stability. However, high synthesis temperatures have historically made these materials incompatible with the creation of photovoltaic devices. Here, we demonstrate the solution processed synthesis of luminescent BaZrS3 and BaHfS3 chalcogenide perovskite films using single-phase molecular precursors at sulfurization temperatures of 575 °C and sulfurization times as short as one hour. These molecular precursor inks were synthesized using known carbon disulfide insertion chemistry to create Group 4 metal dithiocarbamates, and this chemistry was extended to create species, such as barium dithiocarboxylates, that have never been reported before. These findings, with added future research, have the potential to yield fully solution processed thin films of chalcogenide perovskites for various optoelectronic applications.

5.
Science ; 378(6625): 1235-1239, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520893

RESUMO

Electronic and optical excitations in two-dimensional systems are distinctly sensitive to the presence of a moiré superlattice. We used cryogenic transmission electron microscopy and spectroscopy to simultaneously image the structural reconstruction and associated localization of the lowest-energy intralayer exciton in a rotationally aligned WS2-WSe2 moiré superlattice. In conjunction with optical spectroscopy and ab initio calculations, we determined that the exciton center-of-mass wave function is confined to a radius of approximately 2 nanometers around the highest-energy stacking site in the moiré unit cell. Our results provide direct evidence that atomic reconstructions lead to the strongly confining moiré potentials and that engineering strain at the nanoscale will enable new types of excitonic lattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA